Building Self Learning Recommendation system – IV : Prototype Phase I: Segmenting the customers.

This is the fourth post of our series on building a self learning recommendation system using reinforcement learning. In the coming posts of the series we will expand on our understanding of the reinforcement learning problem and build an application for recommending products. These are the different posts of the series where we will progressively build our recommendation system.

  1. Recommendation system and reinforcement learning primer
  2. Introduction to multi armed bandit problem
  3. Self learning recommendation system as a K-armed bandit
  4. Build the prototype of the self learning recommendation system: Part I ( This post )
  5. Build the prototype of the self learning recommendation system: Part II
  6. Productionising the self learning recommendation system: Part I – Customer Segmentation
  7. Productionising the self learning recommendation system: Part II – Implementing self learning recommendation
  8. Evaluating different deployment options for the self learning recommendation systems.

Introduction

In the last post of the series we formulated the idea on how we can build the self learning recommendation system as a K armed bandit. In this post we will go ahead and start building the prototype of our self learning system based on the idea we developed. We will be using Jupyter notebook to build our prototype. Let us dive in

Processes for building our self learning recommendation system

Let us take a birds eye view of the recommendation system we are going to build. We will implement the following processes

  1. Cleaning of the data set
  2. Segment the customers using RFM segmentation
  3. Creation of states for contextual recommendation
  4. Creation of reward and value distributions
  5. Implement the self learning process using simple averaging method
  6. Simulate customer actions to initiate self learning for recommendations

The first two processes will be implemented in this post and the remaining processes will be covered in the next post.

Cleaning the data set

The data set which we would be using for this exercise would be the online retail data set. Let us load the data set in our system and get familiar with the data. First let us import all the necessary library files

from pickle import load
from pickle import dump
import numpy as np
import pandas as pd
from dateutil.parser import parse
import os
from collections import Counter
import operator
from random import sample

We will now define a simple function to load the data using pandas.

def dataLoader(orderPath):
    # THis is the method to load data from the input files    
    orders = pd.read_csv(orderPath,encoding = "ISO-8859-1")
    return orders

The above function reads the csv file and returns the data frame. Let us use this function to load the data and view the head of the data

# Please define your specific path where the data set is loaded
filename = "OnlineRetail.csv"
# Let us load the customer Details
custDetails = dataLoader(filename)
custDetails.head()
Figure 1 : Retail data set

Further in the exercise we have to work a lot with the dates and therefore we need to extract relevant details from the date column like the day, weekday, month, year etc. We will do that with the date parser library. Let us now parse all the date related column and create new columns storing the new details we extract after parsing the dates.

#Parsing  the date
custDetails['Parse_date'] = custDetails["InvoiceDate"].apply(lambda x: parse(x))
# Parsing the weekdaty
custDetails['Weekday'] = custDetails['Parse_date'].apply(lambda x: x.weekday())
# Parsing the Day
custDetails['Day'] = custDetails['Parse_date'].apply(lambda x: x.strftime("%A"))
# Parsing the Month
custDetails['Month'] = custDetails['Parse_date'].apply(lambda x: x.strftime("%B"))
# Extracting the year
custDetails['Year'] = custDetails['Parse_date'].apply(lambda x: x.strftime("%Y"))
# Combining year and month together as one feature
custDetails['year_month'] = custDetails['Year'] + "_" +custDetails['Month']

custDetails.head()
Figure 2 : Data frame after date parsing

As seen from line 22 we have used the lambda() function to first parse the ‘date’ column. The parsed date is stored in a new column called ‘Parse_date’. After parsing the dates first, we carry out different operations, again using the lambda() function on the parsed date. The different operations we carry out are

  1. Extract weekday and store it in a new column called ‘Weekday’ : line 24
  2. Extract the day of the week and store it in the column ‘Day’ : line 26
  3. Extract the month and store in the column ‘Month’ : line 28
  4. Extract year and store in the column ‘Year’ : line 30

Finally, in line 32 we combine the year and month to form a new column called ‘year_month’. This is done to enable easy filtering of data based on the combination of a year and month.

We will also create a column which gives you the gross value of each puchase. Gross value can be calculated by multiplying the quantity with unit price.

# Creating gross value column
custDetails['grossValue'] = custDetails["Quantity"] * custDetails["UnitPrice"]
custDetails.head()
Figure 3 :Customer Details Data frame

The reason we are calculating the gross value is to use it for segmentation of customers which will be dealt with in the next section. This takes us to the end of the initial preparation of the data set. Next we start creating customer segments.

Creating Customer Segments

In the last post, where we formulated the problem statement, we identified that customer segment could be one of the important components of the states. In addition to the customer segment,the other components are day of purchase and period of the month. So our next endeavour is to prepare data to create the different states we require. We will start with defining the customer segment.

There are different approaches to creating customer segments. In this post we will use the RFM analysis to create customer segments. Let us get going with creation of customer segments from our data set. We will continue on the same notebook we were using so far.

import lifetimes

In line 39,We import the lifetimes package to create the RFM data from our transactional dataset. Next we will use the package to convert the transaction data to the specific format.

# Converting data to RFM format
RfmAgeTrain = lifetimes.utils.summary_data_from_transaction_data(custDetails, 'CustomerID', 'Parse_date', 'grossValue')
RfmAgeTrain

The process for getting the frequency, recency and monetary value is very simple using the life time package as shown in line 42 . From the output we can see the RFM data frame formed with each customer ID as individual row. For each of the customer, the frequency and recency in days is represented along with the average monetary value for the customer. We will be using these values for creating clusters of customer segments.

Before we work further, let us clean the data frame a bit by resetting the index values as shown in line 44

RfmAgeTrain = RfmAgeTrain.reset_index()
RfmAgeTrain

What we will now do is to use recency, frequency and monetary values seperately to create clusters. We will use the K-means clustering technique to find the number of clusters required. Many parts of the code used for clustering is taken from the following post on customer segmentation.

In lines 46-47 we import the Kmeans clustering method and matplotlib library.

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

For the purpose of getting the recency matrix let us take a subset of the data frame with only customer ID and recency value as shown in lines 48-49

user_recency = RfmAgeTrain[['CustomerID','recency']]
user_recency.head()

In any clustering problem,as you might know, one of the critical tasks is to determine the number of clusters which in the Kmeans algorithm is a parameter. We will use the well known elbow method to find the optimum number of clusters.

# Initialize a dictionary to store sum of squared error
sse = {}
recency = user_recency[['recency']]

# Loop through different cluster combinations
for k in range(1,10):
    # Fit the Kmeans model using the iterated cluster value
    kmeans = KMeans(n_clusters=k,max_iter=2000).fit(recency)
    # Store the cluster against the sum of squared error for each cluster formation   
    sse[k] = kmeans.inertia_
    
# Plotting all the clusters
plt.figure()
plt.plot(list(sse.keys()),list(sse.values()))
plt.xlabel("Number of clusters")
plt.show()
Figure 4 : Plot of number of clusters

In line 51, we initialise a dictionary to store the sum of square error for each k-means cluster and then subset the data frame ‘recency’ with only the recency values in line 52.

From line 55, we start a loop to itrate through different cluster values. For each cluster value, we fit the k-means model in line 57. We also store the sum of squared error in line 59 for each of the cluster in the dictionary we initialized.

Lines 62-65, we visualise the number of clusters against the sum of squared error, which gives and indication of the right k value to choose.

From the plot we can see that 2,3 and 4 cluster values are where the elbow tapers and one of these values can be taken as the cluster value.Let us choose 4 clusters for our purpose and then refit the data.

# let us take four clusters 
kmeans = KMeans(n_clusters=4)
# Fit the model on the recency data
kmeans.fit(user_recency[['recency']])
# Predict the clusters for each of the customer
user_recency['RecencyCluster'] = kmeans.predict(user_recency[['recency']])
user_recency

In line 67, we instantiate the KMeans class using 4 clusters. We then use the fit method on the recency values in line 69. Once the model is fit, we predict the cluster for each customer in line 71.

From the output we can see that the recency cluster is predicted against each customer ID. We will clean up this data frame a bit, by resetting the index.

user_recency.sort_values(by='recency',ascending=False).reset_index(drop=True)

From the output we can see that the data is ordered according to the clusters. Let us also look at how the clusters are mapped vis a vis the actual recency value. For doing this, we will group the data with respect to each cluster and then find the mean of the recency value, as in line 74.

user_recency.groupby('RecencyCluster')['recency'].mean().reset_index()

From the output we see the mean value of recency for each cluster. We can clearly see that there is a demarcation of the mean values with the value of the cluster. However, the mean values are not mapped in a logical (increasing or decreasing) order of the clusters. From the output we can see that cluster 3 is mapped to the smallest recency value ( 7.72). The next smallest value (115.85) is mapped to cluster 0 and so on. So there is not specific ordering to the custer and the mean value mapping. This might be a problem when we combine all the clusters for recency, frequency and monetary together to derive a combined score. So it is necessary to sort it in an ordered fashion. We will use a custom function to get the order right. Let us see the function.

# Function for ordering cluster numbers

def order_cluster(cluster_field_name,target_field_name,data,ascending):    
    # Group the data on the clusters and summarise the target field(recency/frequency/monetary) based on the mean value
    data_new = data.groupby(cluster_field_name)[target_field_name].mean().reset_index()
    # Sort the data based on the values of the target field
    data_new = data_new.sort_values(by=target_field_name,ascending=ascending).reset_index(drop=True)
    # Create a new column called index for storing the sorted index values
    data_new['index'] = data_new.index
    # Merge the summarised data onto the original data set so that the index is mapped to the cluster
    data_final = pd.merge(data,data_new[[cluster_field_name,'index']],on=cluster_field_name)
    # From the final data drop the cluster name as the index is the new cluster
    data_final = data_final.drop([cluster_field_name],axis=1)
    # Rename the index column to cluster name
    data_final = data_final.rename(columns={'index':cluster_field_name})
    return data_final

In line 77, we define the function and its inputs. Let us look at the inputs to the function

cluster_field_name : This is the field name we give to the cluster in the data set like “RecencyCluster”.

target_field_name : This is the field pertaining to our target values like ‘recency’ , ‘frequency’ and ,’monetary_values’.

data : This is the data frame containing the cluster information and target values, for eg ( user_recency)

ascending : This is a flag indicating whether the data has to be sorted in ascending order or not

Line 79, we group the data based on the cluster and summarise the data under each group to get the mean of the target variable. The idea is to sort the data frame based on the mean values in ascending order which is done in line 81. Once the data is sorted in ascending order, we form a new feature with the data frame index as its values, in line 83. Now the index values will act as sorted cluster values and we will get a mapping between the existing cluster values and the new cluster values which are sorted. In line 85, we merge the summarised data frame with the original data frame so that the new cluster values are mapped to all the values in the data frame. Once the new sorted cluster labels are mapped to the original data frame, the old cluster labels are dropped in line 87 and the column renamed in line 89

Now that we have defined the function, let us implement it and sort the data frame in a logical order in line 91.

user_recency = order_cluster('RecencyCluster','recency',user_recency,False)

Next we will summarise the new sorted data frame and check if the clusters and mapped in a logical order.

user_recency.groupby('RecencyCluster')['recency'].mean().reset_index()

From the above output we can see that the cluster numbers are mapped in a logical order of decreasing recency.
We now need to repeat the process for frequency and monetary values. For convenience we will wrap all these processes in a new function.

def clusterSorter(target_field_name,ascending):    
    # Make the subset data frame using the required feature
    user_variable = RfmAgeTrain[['CustomerID',target_field_name]]
    # let us take four clusters indicating 4 quadrants
    kmeans = KMeans(n_clusters=4)
    kmeans.fit(user_variable[[target_field_name]])
    # Create the cluster field name from the target field name
    cluster_field_name = target_field_name + 'Cluster'
    # Create the clusters
    user_variable[cluster_field_name] = kmeans.predict(user_variable[[target_field_name]])
    # Sort and reset index
    user_variable.sort_values(by=target_field_name,ascending=ascending).reset_index(drop=True)
    # Sort the data frame according to cluster values
    user_variable = order_cluster(cluster_field_name,target_field_name,user_variable,ascending)
    return user_variable

Let us now implement this function to get the clusters for frequency and monetary values.

# Implementing for user frequency
user_freqency = clusterSorter('frequency',True)
user_freqency.groupby('frequencyCluster')['frequency'].mean().reset_index()
# Implementing for monetary values
user_monetary = clusterSorter('monetary_value',True)
user_monetary.groupby('monetary_valueCluster')['monetary_value'].mean().reset_index()

Let us now sit back and look at the three results which we got and try to analyse the results. For recency, we implemented the process using ‘ascending’ value as ‘False’ and the other two with ascending value as ‘True’. Why do you think we did it this way ?

To answer let us look these three variables from the perspective of the desirable behaviour from a customer. We would want customers who are very recent, are very frequent and spent lot of money. So from a recency perspective lesser days is a good behaviour as this indicate very recent customers. The reverse is true for frequency and monetary where the more of those values is the desirable behaviour. This is why we used 'ascending = false' in the recency variable as the clusters would be sorted with the less frequent ( more days) for cluster ‘0’ and the mean days comes down when we go to cluster 3. So in effect we are making cluster 3 as the group of most desirable customers. The reverse applies to frequency and monetary value where we gave 'ascending = True' to make custer 3 as the group of most desirable customers.

Now that we have obtained the clusters for each of the variables seperately, its time to combine them into one data frame and then get a consolidated score which will become the segments we want.

Let us first combine each of the individual dataframes we created with the original data frame

# Merging the individual data frames with the main data frame
RfmAgeTrain = pd.merge(RfmAgeTrain,user_monetary[["CustomerID",'monetary_valueCluster']],on='CustomerID')
RfmAgeTrain = pd.merge(RfmAgeTrain,user_freqency[["CustomerID",'frequencyCluster']],on='CustomerID')
RfmAgeTrain = pd.merge(RfmAgeTrain,user_recency[["CustomerID",'RecencyCluster']],on='CustomerID')
RfmAgeTrain.head()

In lines 115-117, we combine the individual dataframes to our main dataframe. We combine them on the ‘CustomerID’ field. After combining we have a consolidated data frame with each individual cluster label mapped to each customer id as shown below

Let us now add the individual cluster labels to get a combined cluster score.

# Calculate the overall score
RfmAgeTrain['OverallScore'] = RfmAgeTrain['RecencyCluster'] + RfmAgeTrain['frequencyCluster'] + RfmAgeTrain['monetary_valueCluster']
RfmAgeTrain

Let us group the data based on the ‘OverallScore’ and find the mean values of each of our variables , recency, frequency and monetary.

RfmAgeTrain.groupby('OverallScore')['frequency','recency','monetary_value'].mean().reset_index()

From the output we can see how the distributions of the new clusters are. From the values we can see that there is some level of logical demarcation according to the cluster labels. The higher cluster labels ( 4,5 & 6) have high monetary values, high frequency levels and also mid level recency levels. The first two clusters ( 0 & 1) have lower monetary values, high recency and low levels of frequency. Another stand out cluster is cluster 3, which has the lowest monetary value, lowest frequency and the lowest recency. We can very well go with these six clusters or we can combine clusters who demonstrate similar trends/behaviours. However this assessment needs to be taken based on the number of customers we have under each of these new clusters. Let us get those numbers first.

RfmAgeTrain.groupby('OverallScore')['frequency'].count().reset_index()

From the counts, we can see that the higher scores ( 4,5,6) have very few customers relative to the other clusters. So it would make sense to combine them to one single segment. As these clusters have higher values we will make them customer segment ‘Q4’. Cluster 3 has some of the lowest relative scores and so we will make it segment ‘Q1’. We can also combine clusters 0 & 1 to a single segment as the number of customers for those two clusters are also lower and make it segment ‘Q2’. Finally cluster 2 would be segment ‘Q3’ . Lets implement these steps next.

RfmAgeTrain['Segment'] = 'Q1'
RfmAgeTrain.loc[(RfmAgeTrain.OverallScore == 0) ,'Segment']='Q2'
RfmAgeTrain.loc[(RfmAgeTrain.OverallScore == 1),'Segment']='Q2'
RfmAgeTrain.loc[(RfmAgeTrain.OverallScore == 2),'Segment']='Q3'
RfmAgeTrain.loc[(RfmAgeTrain.OverallScore == 4),'Segment']='Q4'
RfmAgeTrain.loc[(RfmAgeTrain.OverallScore == 5),'Segment']='Q4'
RfmAgeTrain.loc[(RfmAgeTrain.OverallScore == 6),'Segment']='Q4'

RfmAgeTrain

After allocating the clusters to the respective segments, the subsequent data frame will look as above. Let us now take the mean values of each of these segments to understand how the segment values are distributed.

RfmAgeTrain.groupby('Segment')['frequency','recency','monetary_value'].mean().reset_index()

From the output we can see that for each customer segment the monetary value and frequency values are in ascending order. The value of recency is not ordered in any fashion. However that dosent matter as all what we are interested in getting is the segmentation of the customer data into four segments. Finally let us merge the segment information to the orginal customer transaction data.

# Merging the customer details with the segment
custDetails = pd.merge(custDetails, RfmAgeTrain, on=['CustomerID'], how='left')
custDetails.head()

The above output is just part of the final dataframe. From the output we can see that the segment data is updated to the original data frame.

With that we complete the first step of our process. Let us summarise what we have achieved so far.

  • Preprocessed data to extract information required to generate states
  • Transformed data to the RFM format.
  • Clustered data with respect to recency, frequency and monetary values and then generated the composite score.
  • Derived 4 segments based on the cluster data.

Having completed the segmentation of customers, we are all set to embark on the most important processes.

What Next ?

The next step is to take the segmentation information and then construct our states and action strategies from them. This will be dealt with in the next post. Let us take a peek into the processes we will implement in the next post.

  1. Create states and actions from the customer segments we just created
  2. Initialise the value distribution and rewards distribution
  3. Build the self learning recommendaton system using the epsilon greedy method
  4. Simulate customer action to get the feed backs
  5. Update the value distribution based on customer feedback and improve recommendations

There is lot of ground which will be covered in the next post.Please subscribe to this blog post to get notifications when the next post is published.

You can also subscribe to our Youtube channel for all the videos related to this series.

The complete code base for the series is in the Bayesian Quest Git hub repository

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, subscribe to our Youtube channel

I would also recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

The Data Science Workshop Book

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!

Building Self Learning Recommendation system – III : Recommendation System as a K-armed Bandit

This is the third post of our series on building a self learning recommendation system using reinforcement learning. This series consists of 8 posts where in we progressively build a self learning recommendation system.

  1. Recommendation system and reinforcement learning primer
  2. Introduction to multi armed bandit problem
  3. Self learning recommendation system as a K-armed bandit ( This post )
  4. Build the prototype of the self learning recommendation system: Part I
  5. Build the prototype of the self learning recommendation system: Part II
  6. Productionising the self learning recommendation system: Part I – Customer Segmentation
  7. Productionising the self learning recommendation system: Part II – Implementing self learning recommendation
  8. Evaluating different deployment options for the self learning recommendation systems.

Introduction

In our previous post we implemented couple of experiments with K-armed bandit. When we discussed the idea of the K-armed bandits from the context of recommendation systems, we briefly touched upon the idea that the buying behavior of a customer depends on the customers context. In this post we will take the idea of the context forward and how the context will be used to build the recommendation system using the K-armed bandit solution.

Defining the context for customer buying

When we discussed about reinforcement learning in our first post, we learned about the elements of a reinforcement learning setting like state, actions, rewards etc. Let us now identify these elements in the context of the recommendation system we are building.

State

When we discussed about reinforcement learning in the first post, we learned that when an agent interacts with the environment at each time step, the agent manifests a certain state. In the example of the robot picking trash the different states were that of high charge or low charge. However in the context of the recommendation system, what would be our states ? Let us try to derive the states from the context of a customer who makes an online purchase. What would be those influencing factors which defines the product the customer buys ? Some of these are

  • The segment the customer belongs
  • The season or time of year the purchase is made
  • The day in which purchase is made

There could be many other influencing factors other than this. For simplicity let us restrict to these factors for now. A state could be made from the combinations of all these factors. Let us arrive at these factors through some exploratory analysis of the data

The data set we would be using is the online retail data set available in the UCI Machine learning library. We will download the data and the place it in local folder and the read the file from the local folder.

import numpy as np
import pandas as pd
from dateutil.parser import parse

Lines 1-3 imports all the necessary packages for our purpose. Let us now load the data as a pandas data frame

# Please use the path to the actual data
filename = "data/Online Retail.xlsx"
# Let us load the customer Details
custDetails = pd.read_excel(filename, engine='openpyxl')
custDetails.head()
Figure 1: Head of the retail data set

In line 5, we load the data from disk and then read the excel shee using the ‘openpyxl’ engine. Please note to pip install the ‘openpyxl’ package if not available.

Let us now parse the date column using date parser and extract information from the date column.

#Parsing  the date
custDetails['Parse_date'] = custDetails["InvoiceDate"].apply(lambda x: parse(str(x)))
# Parsing the weekdaty
custDetails['Weekday'] = custDetails['Parse_date'].apply(lambda x: x.weekday())
# Parsing the Day
custDetails['Day'] = custDetails['Parse_date'].apply(lambda x: x.strftime("%A"))
# Parsing the Month
custDetails['Month'] = custDetails['Parse_date'].apply(lambda x: x.strftime("%B"))
# Getting the year
custDetails['Year'] = custDetails['Parse_date'].apply(lambda x: x.strftime("%Y"))
# Getting year and month together as one feature
custDetails['year_month'] = custDetails['Year'] + "_" +custDetails['Month']
# Feature engineering of the customer details data frame
# Get the date  as a seperate column
custDetails['Date'] = custDetails['Parse_date'].apply(lambda x: x.strftime("%d"))
# Converting date to float for easy comparison
custDetails['Date']  = custDetails['Date'] .astype('float64')
# Get the period of month column
custDetails['monthPeriod'] = custDetails['Date'].apply(lambda x: int(x > 15))

custDetails.head()
Figure 2 : Parsed Data

As seen from line 11 we have used the lambda() function to first parse the ‘date’ column. The parsed date is stored in a new column called ‘Parse_date’. After parsing the dates first, we carry out different operations, again using the lambda() function on the parsed date. The different operations we carry out are

  1. Extract weekday and store it in a new column called ‘Weekday’ : line 13
  2. Extract the day of the week and store it in the column ‘Day’ : line 15
  3. Extract the month and store in the column ‘Month’ : line 17
  4. Extract year and store in the column ‘Year’ : line 19

In line 21 we combine the year and month to form a new column called ‘year_month’. This is done to enable easy filtering of data, based on the combination of a year and month.

We make some more changes from line 24-28. In line 24, we extract the date of the month and then convert it into a float type in line 26. The purpose of taking the date is to find out which of these transactions have happened before 15th of the month and which after 15th. We extract those details in line 28, where we create a binary points ( 0 & 1) as to whether a date falls in the last 15 days or the first 15 days of the month.

We will also create a column which gives you the gross value of each puchase. Gross value can be calculated by multiplying the quantity with unit price. After that we will consolidate the data for each unique invoice number and then explore some of the elements of states which we want to explore

# Creating gross value column
custDetails['grossValue'] = custDetails["Quantity"] * custDetails["UnitPrice"]
# Consolidating accross the invoice number for gross value
retailConsol = custDetails.groupby('InvoiceNo')['grossValue'].sum().reset_index()
print(retailConsol.shape)
retailConsol.head()
Figure 3: Aggregated Data

Now that we have got the data consolidated based on each invoice number, let us merge the date related features from the original data frame with this consolidated data. We merge the consolidated data with the custDetails data frame and then drop all the duplicate data so that we get a record per invoice number, along with its date features.

# Merge the other information like date, week, month etc
retail = pd.merge(retailConsol,custDetails[["InvoiceNo",'Parse_date','Weekday','Day','Month','Year','year_month','monthPeriod']],how='left',on='InvoiceNo')
# dropping ALL duplicate values
retail.drop_duplicates(subset ="InvoiceNo",keep = 'first', inplace = True)
print(retail.shape)
retail.head()
Figure 4 : Consolidated data

Let us first look at the month wise consolidation of data and then plot the data. We will use a functions to map the months to its index position. This is required to plot the data according to months. The function ‘monthMapping‘, maps an integer value to the month and then sort the data frame.

# Create a map for each month
def monthMapping(mnthTrend):
    # Get the map
    mnthMap = {"January": 1, "February": 2,"March": 3, "April": 4,"May": 5, "June": 6,"July": 7, "August": 8,"September": 9, "October": 10,"November": 11, "December": 12}
    # Create a new feature for month
    mnthTrend['mnth'] = mnthTrend.Month
    # Replace with the numerical value
    mnthTrend['mnth'] = mnthTrend['mnth'].map(mnthMap)
    # Sort the data frame according to the month value
    return mnthTrend.sort_values(by = 'mnth').reset_index()

We will use the above function to consolidate the data according to the months and then plot month wise grossvalue data

mnthTrend = retail.groupby(['Month'])['grossValue'].agg('mean').reset_index().sort_values(by = 'grossValue',ascending = False)
# sort the months in the right order
mnthTrend = monthMapping(mnthTrend)
sns.set(rc = {'figure.figsize':(20,8)})
sns.lineplot(data=mnthTrend, x='Month', y='grossValue')
plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
plt.show()

We can see that there is sufficient amount of variability of data month on month. So therefore we will take months as one of the context items on which the states can be constructed.

Let us now look at buying pattern within each month and check how the buying pattern is within the first 15 days and the latter half

# Aggregating data for the first 15 days and latter 15 days
fortnighTrend = retail.groupby(['monthPeriod'])['grossValue'].agg('mean').reset_index().sort_values(by = 'grossValue',ascending = False)

sns.set(rc = {'figure.figsize':(20,8)})
sns.lineplot(data=fortnighTrend, x='monthPeriod', y='grossValue')
plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
plt.show()

We can see that there is as small difference between buying patterns in the first 15 days of the month and the latter half of the month. Eventhough the difference is not significant, we will still take this difference as another context.

Next let us aggregate data as per the days of the week and and check the trend

# Aggregating data accross weekdays
dayTrend = retail.groupby(['Weekday'])['grossValue'].agg('mean').reset_index().sort_values(by = 'grossValue',ascending = False)

sns.set(rc = {'figure.figsize':(20,8)})
sns.lineplot(data=dayTrend, x='Weekday', y='grossValue')
plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
plt.show()

We can also see that there is quite a bit of variability of buying patterns accross the days of the week. We will therefore take the week days also as another context

So far we have observed 4 different features, which will become our context for recommending products. The context which we have defined would act as the states from the reinforcement learning setting perspective. Let us now look at the big picture of how we will formulate the recommendation task as reinforcement learning setting.

The Big Picture

Figure 5: The Big Picture

We will now have a look at the big picture of this implementation. The above figure is the representation of what we will implement in code in the next few posts.

The process starts with the customer context, consisting of segment, month, period in the month and day of the week. The combination of all the contexts will form the state. From an implementation perspective we will run simulations to generate the context since we do not have a real system where customers logs in and thereby we automatically capture context.

Based on the context, the system will recommend different products to the customer. From a reinforcement learning context these are the actions which are taken from each state. The initial recommendation of products ( actions taken) will be based on the value function learned from the historical data.

The customer will give rewards/feedback based on the actions taken( products recommended ). The feedback would be the manifestation of the choices the customer make. The choice the customer makes like the products the customer buys, browses and ignores from the recommended list. Depending on the choice made by the customer, a certain reward will be generated. Again from an implementation perspective, since we do not have real customers giving feedback, we will be simulating the customer feedback mechanism.

Finally the update of the value functions based on the reward generated will be done based on the simple averaging method. Based on the value update, the bandit will learn and adapt to the affinities of the customers in the long run.

What next ?

In this post we explored the data and then got a big picture of what we will implement going forward. In the next post we will start implementing these processes and building a prototype using Jupyter notebook. Later on we will build an application using Python scripts and then explore options to deploy the application. Watch out this space for more.

 The next post will be published next week. Please subscribe to this blog post to get notifications when the next post is published.

You can also subscribe to our Youtube channel for all the videos related to this series.

The complete code base for the series is in the Bayesian Quest Git hub repository

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, subscribe to our Youtube channel

I would also recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

The Data Science Workshop Book

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!

Building Self Learning Recommendation system using Reinforcement Learning – II : The bandit problem

This is the second post of our series on building a self learning recommendation system using reinforcement learning. This series consists of 7 posts where in we progressively build a self learning recommendation system.

  1. Recommendation system and reinforcement learning primer
  2. Introduction to multi armed bandit problem ( This post )
  3. Self learning recommendation system as a bandit problem
  4. Build the prototype of the self learning recommendation system: Part I
  5. Build the prototype of the self learning recommendation system: Part II
  6. Productionising the self learning recommendation system: Part I – Customer Segmentation
  7. Productionising the self learning recommendation system: Part II – Implementing self learning recommendation
  8. Evaluating different deployment options for the self learning recommendation systems.

Introduction

Figure 1 : Reinforcement Learning Setting

In our previous post we introduced different types of recommendation systems and explored some of the basic elements of reinforcement learning. We found out that reinforcement learning problems evaluates different actions when the agent is in a specific state. The action taken generates a certain reward. In other words we get a feedback on how good the action was based on the reward we got. However we wont get the feed back as to whether the action taken was the best available. This is what contrasts reinforcement learning from supervised learning. In supervised learning the feed back is instructive and gives you the quantum of the correctness of an action based on the error. Since reinforcement learning is evaluative, it depends a lot on exploring different actions under different states to find the best one. This tradeoff between exploration and exploitation is the bedrock of reinforcement learning problems like the K armed bandit. Let us dive in.

The Bandit Problem.

In this section we will try to understand K armed bandit problem setting from the perspective of product recommendation.

A recommendation system recommends a set of products to a customer based on the customers buying patterns which we call as the context. The context of the customer can be the segment the customer belongs to, the period in which the customer buys, like which month, which week of the month, which day of the week etc. Once recommendations are made to a customer, the customer based on his or her affinity can take different type of actions i.e. (i) ignore the recommendation (ii) click on the product and further explore (iii) buy the recommended product. The objective of the recommendation system would be to recommend those products which are most likely to be accepted by the customer or in other words maximize the value from the recommendations.

Based on the recommendation example let us try to draw parallels to the K armed bandit. The K-armed bandit is a slot machine which has ‘K’ different arms or levers. Each pull of the lever can have a different outcome. The outcomes can vary from no payoff to winning a jackpot. Your objective is to find the best arm which yields the best payoff through repeated selection of the ‘K’ arms. This is where we can draw parallels’ between armed bandits and recommendation systems. The products recommended to a customer are like the levers of the bandit. The value realization from the recommended products happens based on whether the customer clicks on the recommended product or buys them. So the aim of the recommendation system is to identify the products which will generate the best value i.e which will very likely be bought or clicked by the customer.

Figure 2 : Recommendation system as K lever bandits

Having set the context of the problem statement , we will understand in depth the dynamics of the K-armed bandit problem and couple of solutions for solving them. This will lay the necessary foundation for us to try this in creating our recommendation system.

Non-Stationary Armed bandit problem

When we discussed about reinforcement learning we learned about the reward function. The reward function can be of two types, stationary and non-stationary. In stationary type the reward function will not change over time. So over time if we explore different levers we will be able to figure out which lever gives the best value and stick to it. In contrast,in the non stationary problem, the reward function changes over time. For non stationary problem, identifying the arms which gives the best value will be based on observing the rewards generated in the past for each of the arms. This scenario is more aligned with real life cases where we really do not know what would drive a customer at a certain point of time. However we might be able to draw a behaviour profile by observing different transactions over time. We will be exploring the non-stationary type of problem in this post.

Exploration v/s exploitation

Figure 3 : Should I exploit the current lever or explore ?

One major dilemma in problems like the bandit is the choice between exploration and exploitation. Let us explain this with our context. Let us say after few pulls of the first four levers we found that lever 3 has been consistently giving good rewards. In this scenario, a prudent strategy would be to keep on pulling the 3rd lever as we are sure that this is the best known lever. This is called exploitation. In this case we are exploiting our knowledge about the lever which gives the best reward. We also call the exploitation of the best know lever as the greedy method.

However the question is, will exploitation of our current knowledge guarantee that we get the best value in the long run ? The answer is no. This is because, so far we have only tried the first 4 levers, we haven’t tried the other levers from 5 to 10. What if there was another lever which is capable of giving higher reward ? How will we identify those unknown high value levers if we keep sticking to our known best lever ? This dilemma is called the exploitation v/s exploration. Having said that, resorting to always exploring will also be not judicious. It is found out that a mix of exploitation and exploration yields the best value over a long run.

Methods which adopt a mix of exploitation and exploration are called ε greedy methods. In such methods we exploit the greedy method most of the time. However at some instances, say with a small probability of ε we randomly sample from other levers also so that we get a mix of exploitation and exploration. We will explore different ε greedy methods in the subsequent sections

Simple averaging method

In our discussions so far we have seen that the dynamics of reinforcement learning involves actions taken from different states yielding rewards based on the state-action pair chosen. The ultimate aim is to maximize the rewards in the long run. In order to maximize the overall rewards, it is required to exploit the actions which gets you the maximum rewards in the long run. However to identify the actions with the highest potential we need to estimate the value of that action over time. Let us first explore one of the methods called simple averaging method.

Let us denote the value of an action (a) at time t as Qt(a). Using simple averaging method Qt(a) can be estimated by summing up all the rewards received for the action (a) divided by the number of times action (a) was selected. This can be represented mathematically as

In this equation R1 .. Rn-1 represents the rewards received till time (t) for action (a)

However we know that the estimate of value are a moving average, which means that there would be further instances when action (a) will be selected and corresponding rewards received. However it would be tedious to always sum up all the rewards and then divide it by the number of instances. To avoid such tedious steps, the above equation can be rewritten as follows

This is a simple update formulae where Qn+1 is the new estimate for the n+1 occurance of action a, Qn is the estimate till the nth try and Rn is the reward received for the nth try .

In simple terms this formulae can be represented as follows

New Estimate <----- Old estimate + Step Size [ Reward - Old Estimate]

For simple averaging method the Step Size is the reciprocal of the number of times that particular action was selected ( 1/n)

Now that we have seen the estimate generation using the simple averaging method, let us look at the complete algorithm.

  1. Initialize values for the bandit arms from 1 to K. Usually we initialize a value of 0 for all the bandit arms
  2. Define matrices to store the Value estimates for all the arms ( Qt(a) ) and initialize it to zero
  3. Define matrices to store the tracker for all the arms i.e a tracker which stores the number of times each arm was pulled
  4. Start a iterative loop and
    • Sample a random probability value
    • if the probability value is greater than ε, pick the arm with the largest value. If the probability value is less than ε, randomly pick an arm.
  5. Get the reward for the selected arm
  6. Update the number tracking matrix with 1 for the arm which was selected
  7. Update the Qt(a) matrix, for the arm which was picked using the simple averaging formulae.

Let us look at python implementation of the simple averaging problem next

Implementation of Simple averaging method for K armed bandit

In this implementation we will experiment with around 2000 different bandits with each bandit having 10 arms each. We will be evaluating these bandits for around 10000 steps. Finally we will average the values across all the bandits for each time step. Let us dive into the implementation.

Let us first import all the required packages for the implementation in lines 1-4

import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from numpy.random import normal as GaussianDistribution

We will start off by defining all the parameters of our bandit implementation. We would have 2000 seperate bandit experiments. Each bandit experiment will run for around 10000 steps. As defined earlier each bandit will have 10 arms. Let us now first define these parameters

# Define the armed bandit variables
nB = 2000 # Number of bandits
nS = 10000 # Number of steps we will take for each bandit
nA = 10 # Number of arms or actions of the bandit
nT = 2 # Number of solutions we would apply

As we discussed in the previous post the way we arrive at the most optimal policy is through the rewards an agent receives in the process of interacting with the environment. The policy defines the actions the agent will take. In our case, the actions we are going to take is the arms which we are going to pull. The reward which we get from our actions is based on the internal calibration of the armed bandit. The policy we will adopt is a mix of exploitation and exploration. This means that most of the time we will exploit the which action which was found to give the best reward. However once in a while we also do a bit of exploration. The exploration is controlled by a parameter ε.

Next let us define the containers to store the rewards which we get from each arm and also to track whether the reward we got was the most optimal reward.

# Defining the rewards container
rewards = np.full((nT, nB, nS), fill_value=0.)
# Defining the optimal selection container
optimal_selections = np.full((nT, nB, nS), fill_value=0.)
print('Rewards tracker shape',rewards.shape)
print('Optimal reward tracker shape',optimal_selections.shape)

We saw earlier that the policy with which we would pull each arm would be a mixture of exploitation and exploration. The way we do exploitation is by looking at the average reward obtained from each arm and then selecting the arm which has the maximum reward. For tracking the rewards obtained from each arm we initialize some values for each of the arm and then store the rewards we receive after each pull of the arm.

To start off we initialize all these values as zero as we don’t have any information about the arms and its reward possibilities.

# Set the initial values of our actions
action_Mental_model = np.full(nA, fill_value=0.0) # action_value_estimates > action_Mental_model
print(action_Mental_model.shape)
action_Mental_model

The rewards generated by each arm of the bandit is through the internal calibration of the bandit. Let us also define how that calibration has to be. For this case we will assume that the internal calibration follows a non stationary process. This means that with each pull of the armed bandit the existing value of the armed bandit is incremented by a small value. The value to increment the internal value of the armed bandits is through a Gaussian process with its mean at 0 and a standard deviation of 1.

As a start we will initialize the calibrated values of the bandit to be zero.

# Initialize the bandit calibration values
arm_caliberated_value = np.full(nA, fill_value=0.0) 
arm_caliberated_value

We also need to track how many times a particular action was selected. Therefore we define a counter to store those values.

# Initialize the count of how many times an action was selected
arm_selected_count = np.full(nA, fill_value=0, dtype="int64") 
arm_selected_count

The last of the parameters we will define is the exploration probability value. This value defines how often we would be exploring non greedy arms to find their potential.

# Define the epsilon (ε) value 
epsilon=0.1

Now we are ready to start our experiments. The first step in the process is to decide whether we want to do exploration or exploitation. To decide this , we randomly sample a value between 0 and 1 and compare it with the exploration probability value ( ε) value we selected. If the sampled value is less than the epsilon value, we will explore, otherwise we will exploit. To explore we randomly choose one of the 10 actions or bandit arms irrespective of the value we know it has. If the random probability value is greater than the epsilon value we go into the exploitation zone. For exploitation we pick the arm which we know generates the maximum reward.

# First determine whether we need to explore or exploit
probability = np.random.rand()
probability

The value which we got is greater than the epsilon value and therefore we will resort to exploitation. If the value were to be less than 0.1 (epsilon value : ε ) we would have explored different arms. Please note that the probability value you will get will be different as this is a random generation process.

Now,let us define a decision mechanism so as to give us the arm which needs to be pulled ( our action) based on the probabiliy value.

# Our decision mechanism
if probability >= epsilon:
  my_action = np.argmax(action_Mental_model)
else:
  my_action = np.random.choice(nA)
print('Selected Action',my_action)

In the above section, in line 31 we check whether the probability we generated is greater than the epsilon value . if It it is greater, we exploit our knowledge about the value of the arms and select the arm which has so far provided the greatest reward ( line 33 ). If the value is less than the epsilon value, we resort to exploration wherein we randomly select an arm as shown in line 35. We can see that the action selected is the first action ( index 0) as we are still in the initial values.

Once we have selected our action (arm) ,we have to determine whether the arm is the best arm in terms of the reward potential in comparison with other arms of the bandit. To do that, we find the arm of the bandit which provides the greatest reward. We do this by taking the argmax of all the values of the bandit as in line 38.

# Find the most optimal arm of the bandits based on its internal calibration calculations
optimal_calibrated_arm = np.argmax(arm_caliberated_value)
optimal_calibrated_arm

Having found the best arm its now time to determine if the value which we as the user have received is equal to the most optimal value of the bandit. The most optimal value of the bandit is the value corresponding to the best arm. We do that in line 40.

# Find the value corresponding to the most optimal calibrated arm
optimal_calibrated_value = arm_caliberated_value[optimal_calibrated_arm]

Now we check if the maximum value of the bandit is equal to the value the user has received. If both are equal then the user has made the most optimal pull, otherwise the pull is not optimal as represented in line 42.

# Check whether the value corresponding to action selected by the user and the internal optimal action value are same.
optimal_pull = float(optimal_calibrated_value == arm_caliberated_value[my_action])
optimal_pull

As we are still on the initial values we know that both values are the same and therefore the pull is optimal as represented by the boolean value 1.0 for optimal pull.

Now that we have made the most optimal pull, we also need to get rewards conssumerate with our action. Let us assume that the rewards are generated from the armed bandit using a gaussian process centered on the value of the arm which the user has pulled.

# Calculate the reward which is a random distribution centered at the selected action value
reward = GaussianDistribution(loc=arm_caliberated_value[my_action], scale=1, size=1)[0]
reward

1.52

In line 45 we generate rewards using a Gaussian distribution with its mean value as the value of the arm the user has pulled. In this example we get a value of around 1.52 which we will further store as the reward we have received. Please note that since this is a random generation process, the values you would get could be different from this value.

Next we will keep track of the arms we pulled in the current experiment.

# Update the arm selected count by 1
arm_selected_count[my_action] += 1
arm_selected_count

Since the optimal arm was the first arm, we update the count of the first arm as 1 as shown in the output.

Next we are going to update our estimated value of each of the arms we select. The values we will be updating will be a function of the reward we get and also the current value it already has. So if the current value is Vcur, then the new value to be updated will be Vcur + (1/n) * (r - Vcur) where n is the number of times we have visited that particular arm and 'r' the reward we have got for pulling that arm.

To calcualte this updated value we need to first find the following values

Vcur and n . Let us get those values first

Vcur would be estimated value corresponding to the arm we have just pulled

# Get the current value of our action
Vcur = action_Mental_model[my_action]
Vcur

0.0

n would be the number of times the current arm was pulled

# Get the count of the number of times the arm was exploited
n = arm_selected_count[my_action]
n

1

Now we will update the new value against the estimates of the arms we are tracking.

# Update the new value for the selected action
action_Mental_model[my_action] = Vcur + (1/n) * (reward - Vcur)
action_Mental_model

As seen from the output the current value of the arm we pulled is updated in the tracker. With each successive pull of the arm, we will keep updating the reward estimates. After updating the value generated from each pull the next task we have to do is to update the internal calibration of the armed bandit as we are dealing with a non stationary value function.

# Increment the calibration value based on a Gaussian distribution
increment = GaussianDistribution(loc=0, scale=0.01, size=nA)
# Update the arm values with the updated value
arm_caliberated_value += increment
# Updated arm value
arm_caliberated_value

As seen from lines 59-64, we first generate a small incremental value from a Gaussian distribution with mean 0 and standard deviation 0.01. We add this value to the current value of the internal calibration of the arm to get the new value. Please note that you will get a different value for these processes as this is a random generation of values.

These are the set of processes for one iteration of a bandit. We will continue these iterations for 2000 bandits and for each bandit we will iterate for 10000 steps. In order to run these processes for all the iterations, it is better to represent many of the processes as separate functions and then iterate it through. Let us get going with that task.

Function 1 : Function to select actions

The first of the functions is the one to generate the actions we are going to take.

def Myaction(epsilon,action_Mental_model):
    probability = np.random.rand()
    if probability >= epsilon:
        return np.argmax(action_Mental_model)

    return np.random.choice(nA)

Function 2 : Function to check whether action is optimal and generate rewards

The next function is to check whether our action is the most optimal one and generate the reward for our action.

def Optimalaction_reward(my_action,arm_caliberated_value):
  # Find the most optimal arm of the bandits based on its internal calibration calculations
  optimal_calibrated_arm = np.argmax(arm_caliberated_value)
  # Then find the value corresponding to the most optimal calibrated arm
  optimal_calibrated_value = arm_caliberated_value[optimal_calibrated_arm]
  # Check whether the value of the test bed corresponding to action selected by the user and the internal optimal action value of the test bed are same.
  optimal_pull = float(optimal_calibrated_value == arm_caliberated_value[my_action])
  # Calculate the reward which is a random distribution centred at the selected action value
  reward = GaussianDistribution(loc=arm_caliberated_value[my_action], scale=1, size=1)[0]
  return optimal_pull,reward

Function 3 : Function to update the estimated value of arms of the bandit

def updateMental_model(my_action, reward,arm_selected_count,action_Mental_model):
  # Update the arm selected count with the latest count
  arm_selected_count[my_action] += 1
  # find the current value of the arm selected
  Vcur = action_Mental_model[my_action]
  # Find the number of times the arm was pulled
  n = arm_selected_count[my_action]
  # Update the value of the current arm 
  action_Mental_model[my_action] = Vcur + (1/n) * (reward - Vcur)
  # Return the arm selected and our mental model
  return arm_selected_count,action_Mental_model

Function 4 : Function to increment reward values of the bandits

The last of the functions is the function we use to make the reward generation non-stationary.

def calibrateArm(arm_caliberated_value):
    increment = GaussianDistribution(loc=0, scale=0.01, size=nA)
    arm_caliberated_value += increment
    return arm_caliberated_value

Now that we have defined the functions, we will use these functions to iterate through different bandits and multiple steps for each bandit.

for nB_i in tqdm(range(nB)):
  # Initialize the calibration values for the bandits
  arm_caliberated_value = np.full(nA, fill_value=0.0)
  # Set the initial values of the mental model for each bandit
  action_Mental_model = np.full(nA, fill_value=0.0)
  # Initialize the count of how many times an arm was selected
  arm_selected_count = np.full(nA, fill_value=0, dtype="int64")
  # Define the epsilon value for probability of exploration
  epsilon=0.1
  for nS_i in range(nS):
    # First select an action using the helper function
    my_action = Myaction(epsilon,action_Mental_model)
    # Check whether the action is optimal and calculate the reward
    optimal_pull,reward = Optimalaction_reward(my_action,arm_caliberated_value)
    # Update the mental model estimates with the latest action selected and also the reward received
    arm_selected_count,action_Mental_model = updateMental_model(my_action, reward,arm_selected_count,action_Mental_model)
    # store the rewards
    rewards[0][nB_i][nS_i] = reward
    # Update the optimal step selection counter
    optimal_selections[0][nB_i][nS_i] = optimal_pull
    # Recalibrate the bandit values
    arm_caliberated_value = calibrateArm(arm_caliberated_value)

In line 96, we start the first iterative loop to iterate through each of the set of bandits . Lines 98-104, we initialize the value trackers of the bandit and also the rewards we receive from the bandits. Finally we also define the epsilon value. From lines 105-117, we carry out many of the processes we mentioned earlier like

  • Selecting our action i.e the arm we would be pulling ( line 107)
  • Validating whether our action is optimal or not and getting the rewards for our action ( line 109)
  • Updating the count of our actions and updating the rewards for the actions ( line 111 )
  • Store the rewards and optimal action counts ( lines 113-115)
  • Incrementing the internal value of the bandit ( line 117)

Let us now run the processes and capture the values.

Let us now average the rewards which we have got accross the number of bandit experiments and visualise the reward trends as the number of steps increase.

# Averaging the rewards for all the bandits along the number of steps taken
avgRewards = np.average(rewards[0], axis=0)
avgRewards.shape
plt.plot(avgRewards, label='Sample weighted average')
plt.legend()
plt.xlabel("Steps")
plt.ylabel("Average reward")
plt.show()

From the plot we can see that the average value of rewards increases as the number of steps increases. This means that with increasing number of steps, we move towards optimality which is reflected in the rewards we get.

Let us now look at the estimated values of each arm and also look at how many times each of the arms were pulled.

# Average rewards received by each arm
action_Mental_model

From the average values we can see that the last arm has the highest value of 1.1065. Let us now look at the counts where these arms were pulled.

# No of times each arm was pulled
arm_selected_count

From the arm selection counts, we can see that the last arm was pulled the maximum. This indicates that as the number of steps increased our actions were aligned to the arms which gave the maximum value.

However even though the average value increased with more steps, does it mean that most of the times our actions were the most optimal ? Let us now look at how many times we selected the most optimal actions by visualizing the optimal pull counts.

# Plot of the most optimal actions 
average_run_optimality = np.average(optimal_selections[0], axis=0)
average_run_optimality.shape
plt.plot(average_run_optimality, label='Simple weighted averaging')
plt.legend()
plt.xlabel("Steps")
plt.ylabel("% Optimal action")
plt.show()

From the above plot we can see that there is an increase in the counts of optimal actions selected in the initial steps after which the counts of the optimal actions, plateau’s. And finally we can see that the optimal actions were selected only around 40% of the time. This means that even though there is an increasing trend in the reward value with number of steps, there is still room for more value to be obtained. So if we increase the proportion of the most optimal actions, there would be a commensurate increase in the average value which will be rewarded by the bandits. To achieve that we might have to tweak the way how the rewards are calculated and stored for each arm. One effective way is to use the weighted averaging method

Weighted Averaging Method

When we were dealing with the simple averaging method, we found that the update formule was as follows

New Estimate <----- Old estimate + Step Size [ Reward - Old Estimate]

In the formule, the Step Size for simple averaging method is the reciprocal of the number of times that particular action was selected ( 1/n)

In weighted averaging method we make a small variation in the step size. In this method we use a constant step size method called alpha. The new update formule would be as follows

Qn+1 = Qn + alpha * (reward - Qn)

Usually we take some small values of alpha less than 1 say 0.1 or 0.01 or values similar to that.

Let us now try the weighted averaging method with a step size of 0.1 and observe what difference this method have on the optimal values of each arm.

In the weighted averaging method all the steps are the same as the simple averaging, except for the arm update method which is a little different. Let us define the new update function.

def updateMental_model_WA(my_action, reward,action_Mental_model):
  alpha=0.1 
  qn = action_Mental_model[my_action]
  action_Mental_model[my_action] = qn + alpha * (reward - qn)
  return action_Mental_model

Let us now run the process again with the updated method. Please note that we store the values in the same rewards and optimal_selection matrices. We store the value of weighted average method in index [1]

for nB_i in tqdm(range(nB)):
  # Initialize the calibration values for the bandits
  arm_caliberated_value = np.full(nA, fill_value=0.0)
  # Set the initial values of the mental model for each bandit
  action_Mental_model = np.full(nA, fill_value=0.0)  
  # Define the epsilon value for probability of exploration
  epsilon=0.1
  for nS_i in range(nS):
    # First select an action using the helper function
    my_action = Myaction(epsilon,action_Mental_model)
    # Check whether the action is optimal and calculate the reward
    optimal_pull,reward = Optimalaction_reward(my_action,arm_caliberated_value)
    # Update the mental model estimates with the latest action selected and also the reward received
    action_Mental_model = updateMental_model_WA(my_action, reward,action_Mental_model)
    # store the rewards
    rewards[1][nB_i][nS_i] = reward
    # Update the optimal step selection counter
    optimal_selections[1][nB_i][nS_i] = optimal_pull
    # Recalibrate the bandit values
    arm_caliberated_value = calibrateArm(arm_caliberated_value)

Let us look at the plots for the weighted averaging method.

average_run_rewards = np.average(rewards[1], axis=0)
average_run_rewards.shape
plt.plot(average_run_rewards, label='weighted average')

plt.legend()
plt.xlabel("Steps")
plt.ylabel("Average reward")
plt.show()

From the plot we can see that the average reward increasing with number of steps. We can also notice that the average values obtained higher than the simple averaging method. In the simple averaging method the average value was between 1 and 1.2. However in the weighted averaging method the average value reaches within the range of 1.2 to 1.4. Let us now see how the optimal pull counts fare.

average_run_optimality = np.average(optimal_selections[1], axis=0)
average_run_optimality.shape
plt.plot(average_run_optimality, label='Weighted averaging')
plt.legend()
plt.xlabel("Steps")
plt.ylabel("% Optimal action")
plt.show()

We can observe from the above plot that we take the optimal action for almost 80% of the time as the number of steps progress towards 10000. If you remember the optimal action percentage was around 40% for the simple averaging method. The plots show that the weighted averaging method performs better than the simple averaging method.

Wrapping up

In this post we have understood two methods of finding optimal values for a K armed bandit. The solution space is not limited to these two methods and there are many more methods for solving the bandit problem. The list below are just few of them

  • Upper Confidence Bound Algorithm ( UCB )
  • Bayesian UCB Algorithm
  • Exponential weighted Algorithm
  • Softmax Algorithm

Bandit problems are very useful for many use cases like recommendation engines, website optimization, click through rate etc. We will see more use cases of bandit algorithm in some future posts

What next ?

Having understood the bandit problem, our next endeavor would be to use the concepts in building a self learning recommendation system. The next post would be a pre-cursor to that. In the next post we will formulate our problem context and define the processes for building the self learning recommendation system using a bandit algorithm. This post will be released next week ( Jan 17th 2022).

Please subscribe to this blog post to get notifications when the next post is published.

You can also subscribe to our Youtube channel for all the videos related to this series.

The complete code base for the series is in the Bayesian Quest Git hub repository

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, subscribe to our Youtube channel

I would also recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

The Data Science Workshop Book

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!

.

Building Self learning Recommendation System using Reinforcement Learning : Part I

In our previous series on building data science products we learned how to build a machine translation application and how to deploy the application. In this post we start a new series where in we will build a self learning recommendation system. We will be building this system using reinforcement learning methods. We will be leveraging the principles of the bandit problem to build our self learning recommendation engine. This series will be split across 8 posts.

Let us start our series with a primer on Recommendations systems and Reinforcement learning.

Primer on Recommendation Systems

Recommendation systems (RS) are omnipresent phenomenon which we encounter in our day to day life. Powering the modern day e-commerce systems are gigantic ‘recommendation engines’, looking at each individual transactions, mapping customer profiles and using them to recommend personalized products and services.

Before we embark on building our self learning recommendation system, it will be a good idea to take a quick tour on different types of recommendation systems powering large e-commerce systems of the modern era.

For convenience let us classify recommendation systems into three categories,

Figure 1 : Different types of Recommendation Systems

Traditional recommendation systems leverages data involving user-item interactions ( buying behavior of users ,ratings given by users, etc. ) and attribute information of items ( textual descriptions of items ). Some of the popular type of recommendation systems under the traditional umbrella are

  • Collaborative Filtering Recommendation Systems : The fundamental principle behind collaborative filtering systems is that, two or more individuals who share similar interests tend to have similar propensities for buying. The similarity between individuals are unearthed using the ratings they give, their browsing patterns or their buying patterns. There are different types of collaborative filtering systems like user-based collaborative filtering, item-based collaborative filtering, model based methods ( decision trees, Bayesian models, latent factor models ),etc.
Figure 2 : Collaborative filtering Recommendation Systems
  • Content Based Recommendation Systems : In content based recommendation systems, attribute descriptions of the items are the basis of recommendations. For example if you are a person who watched the Jason Borne series movies and haven’t given any ratings, content based recommendation systems would infer your tastes from the attributes of the movies you watched like action thriller ,CIA , covert operations etc. Based on these attributes the system would recommend movies like Mission Impossible series, as they follow a similar genre.
Figure 3 : Content Based Recommendation Systems
  • Knowledge Based Recommendation Systems : These type of systems make recommendations based on similarity between a users requirements and an item descriptions. Knowledge based recommendation systems are usually useful in context where the purchases infrequent like buying an automobile, real estate, luxury goods etc.
Figure 4 : Knowledge Based Recommendation System
  • Hybrid Recommendation Systems : Hybrid systems or Ensemble systems as they might be called combine best features of the above mentioned approaches to generate recommendations. For example Netflix uses a combination of collaborative filtering ( based on user ratings) and content based( attribute descriptions of movies) to make recommendations.

Traditional class of recommendation systems like collaborative filtering are predominantly linear in its approach. However personalization of customer preferences are not necessarily linear and therefore there was need for modelling recommendation systems for behavior data which are mostly non linear and this led to the rise of deep learning based systems. There are many proponents of deep learning methods some of the notable ones are Youtube, ebay, Twitter and Spotify. Let us now see some of the most popular types of deep learning based recommendation systems.

  • Multi Layer Perceptron based Recommendation Systems : Multi layer perceptron or MLP based recommendation systems are feed-forward neural network systems with multiple layers between the input layer and output layer. The basic setting for this approach is to vectorize user information and item information as the basic inputs. This input layer is fed into the feed forward network and then the output is whether there is an interaction for the item or not. By modelling these interactions as a MLP we will be able to rank specific products in terms of the propensity of the user to that item.
Figure 5: MLP Based Recommendation System
  • CNN based Recommendation Systems : Convolutional Neural networks ( CNN ) are great feature extractors, i.e. they extract global level and local level features. These features are used for providing context which will aid in better recommendations.
  • RNN based Recommendation System: RNNs are good choices when there are sequences of data. In the context of a recommendation systems use cases like recommending what the user will click next can be treated as a sequence to sequence problem. In such problems the interactions between the user and an item at each session will be the basic data and the output will be what the customer clicked next. So if we have data pertaining to session information and the interaction of the user to items during the sessions, we will be able to model a RNN to be used as a Recommender system.
  • Neural attention based Recommendation Systems : Attention based recommendation systems leverage the attention mechanism which has great utility in use cases like machine translation, image captioning, to name a few. Attention based recommendation systems are more apt for recommending multimedia items like photos and videos. In multimedia recommendation, the user preferences can be implicit ( likes, views ). These implicit feed back need not always mean that a user liked that item. For example I might give a like to a video or photo shared by a friend even if I really don’t like those items. In such cases, attention based models attempt to weight the user-item interactions to give more emphasis to parts of the video or image which could be more aligned to the users preferences.
Figure 6 : Deep Learning Based Recommendation System ( Image source : dzone.com/articles/building-a-recommendation-system-using-deep-learni)

The above are some of the prevalent deep learning based recommendation systems. In addition to these there are other deep learning algorithms like Restricted Boltzmann machines based recommendation systems , Autoencoder based recommendation systems and Neural autoregressive recommendation systems . We will explore creation of recommendation systems with these types of models in a future post. Deep learning methods for recommendation systems have tremendous abilities to model non linear relationships between user interactions with items. However on the flip side, there is a severe problem of interpretability of models and the hunger for more data in deep learning methods. Off late deep reinforcement learning methods are widely used as recommendation systems. Deep reinforcement learning systems have abilities to model with large number of states and action spaces and this has made reinforcement learning methods to be used as recommendation systems. Let us explore some of the prominent types of reinforcement learning based recommendation systems.

Since this series is about the application of reinforcement learning to the application of recommendation systems, let us first understand what reinforcement learning is and then get into application of reinforcement learning as recommendation systems.

Primer on Reinforcement Learning

Unlike the supervised learning setting where there is a guide telling you what the right action is, reinforcement learning relies on the environment to discover what the right action is. The learning in reinforcement learning is through interaction with an environment. In the reinforcement learning setting there is an agent ( recommendation system in our context) which receives rewards ( feed back from users like buying, clicking) from the environment ( users ) . The rewards acts as an indicator as to whether the course of action taken by the agent is right or wrong. The agent ultimately learns to take the right action through feed backs received from the environment over a period of time.

Figure 7 : Reinforcement Learning Setting

Elements of Reinforcement Learning

Let us try to understand different elements of reinforcement learning with an example of a robot picking trash.

We will first explore an element of reinforcement learning called the ‘State’. A state can be defined as the representation of the environment in which a task has to be performed. In the context of our robot, we can say that it has two states.

State 1 : High charge

State 2 : Low charge.

Depending on the state the robot is in, it has three decision points to make.

  1. The robot can go on searching for trash.
  2. The robot can wait at its current location so that some one will pick up trash and give it to the robot
  3. The robot can got to its charging station to recharge so that it doesn’t go off power.

These decision points which are taken at each state is called an ‘Action‘ in reinforcement learning parlance.

Let us represent the states and its corresponding actions for our robot

From the above figure we can observe the states of the robot and the actions the robot can take. When the robot has high charge, there would only be two actions the robot is likely to take as there would be no point in recharging as the current charge is high.

Depending on the current state and the action taken from that state, the robot will transition to the next state. Let us look at some possible states the robot can end up based on the initial state and the action it takes.

State : High Charge ,Action : Search

When the current state is high charge and the action taken is search, there are two possible states the robot can attain, stay in its high charge( because the search was quickly over) or deplete its charge and end up with low charge.

State : High Charge ,Action : Wait

If the robot decides to wait when it is high on charge, the robot continues in its state of high charge.

State : Low Charge ,Action : Search

When the charge is low and the robot decides to search there can be two resultant states. One plausible scenario is for the charge to be completely drained making the robot unable to take further action. In such circumstance someone will have to physically take the robot to the charging point and the robot ends up with high charge.

The second scenario is when the robot do not make extensive search and as a result doesn’t drain much. In this scenario the robot continues in its state of low charge.

State : Low Charge ,Action : Wait

When the action is to wait with low charge the robot continues to remain in a state of low charge.

State : Low Charge ,Action : Recharge

Recharging the robot will enable the robot to return to a state of high charge.

Based on our discussions let us now represent the states, different action choices and the subsequent states the robot will end up

So far we have seen different starting states and subsequent states the robot ends up based on the action choices the robot makes. However, what about the consequences for the different action choices the robot makes ? We can see that there are some desirable consequences and some undesirable consequences. For example remaining in high charge state by searching for trash is a desirable consequence. However draining off its charge is an undesirable consequence. To optimize the behavior of the robot we need to encourage desirable consequences and strictly discourage undesirable tendencies. How do we inculcate desirable tendencies and discourage undesirable ones ? This is where the concept of rewards comes in.

The sole purpose of the robot is to collect as much trash as possible. This purpose can be effectively done only when the robot searches for trash. However in the process of searching for trash the robot is also supposed to take care of itself i.e. it should ensure that it has enough charge to go about the search so that it doesn’t drain of charge and make itself ineffective. So the desired behavior for the robot is to search and collect trash and the undesired behavior is to get into a drained state. In order to inculcate the desired behaviors we can introduce rewards when the robot collects trash and also penalizes the robot when it drains itself of its charge. The other actions of waiting and recharging will not have any reward or penalties involved. This system of rewards will imbibe right behaviors in the robot.

The example we have seen of the robot is a manifestation of reinforcement learning. Let us now try to derive the elements of reinforcement learning from the context of the robot.

As seen from the robot example, reinforcement learning is the process of learning what to do at different scenarios based on feed back received. Within this context the part of the robot which learns and decides what to do is called the agent .

The context within which an agent interacts is called the environment. In the context of the robot, it is the space where the robot interacts in the process of carrying out its task of picking trash.

When the agent interacts with its environment, at each time step, the agent manifests a certain state. In our example we saw that the robot had two states of high charge and low charge.

From each state the agent carries out certain actions. The actions an agent carries out from a state will determine the subsequent state. In our context we saw how the actions like searching, waiting or recharging from a starting state defined the state the robot ended up.

The other important element is the reward function. The reward function quantifies the consequences of following certain actions from a state. The kind of reward an agent receives for a state-action pair defines the desirability of doing that action given its state. The objective of an agent is to maximize the rewards it gets in the long run.

The reward function is the quantification of the consequences which is got immediately after following a certain action. It doesn’t look far out in the future whether the course of action is good in the long term. That is what a value function does. A value function looks at maximizing the rewards which gets accumulated over a long term horizon. Imagine that the robot was in a state of low charge and then it spots some trash at a certain distance. So the robot decides to search and pick that trash as it would give an immediate reward. However in the process of searching and picking up the trash its charge drains off and the robot become ineffective, getting a large penalty in the process. In this case, even though the short term reward was good, the long term effect was harmful. If the robot had instead moved to its charging station to get charged and then gone in search of the trash, the overall value would have been more rewarding.

The next element of the reinforcement learning context is the policy. A policy defines how the agent has to behave at different circumstances at a given time. It guides the agent on what needs to be done depending on the circumstances. Let us revisit the situation we saw earlier on the decision point of the robot to recharge or to search for trash it spotted. Let us say there was a policy which said that the robot will have to recharge when the charge drops below a certain threshold. In such cases, the robot could have avoided the situation where the charge was drained. The policy is like the heart of the reinforcement learning context. The policy drives the behavior of agents at different situations.

An optional element of a reinforcement context is the model of the environment. A model is a broad representation of how an environment will behave. Given a state and the action taken from the state a model can be used to predict the next states and also the rewards which will be generated from those actions. A model is used for planning the course of action the agent has to take based on the situation the agent is in.

To sum up, we have seen that Reinforcement learning is a framework which aims at automating the task of learning and decision making. The automation of the learning and decision making process is achieved through the interaction between an agent and its environment through its various states, actions and rewards. The end objective of an agent is to maximize the value function and to learn a policy which maximizes the value function. We will be diving more deeper into some specific types of reinforcement learning problems in the future posts. Let us now look at some of the approaches to solve a reinforcement learning problem.

Different approaches using reinforcement learning

  • Multi-armed bandits : The name multi-armed bandits is derived from the context of a gambler who tries to maximize his/her returns by pulling multiple arms of a slot machine. The gambler through the process of exploration has to find which of the n arms provide the best rewards and once a set of best arms are identified, try to exploit those arms to maximize the rewards he/she gets from the process. In the context of reinforcement learning the problem can be formulated from the perspective of an agent who tries to get sufficient information of the environment ( different slots ) based on extensive exploration and then using the information gained to maximize the returns. Different use cases where multi armed bandits can be used involves clinical trials, recommendation systems, A/B testing, etc.
Figure 8 : Multi Armed Bandit – Exploration v/s Exploitation
  • Markov Decision Process and Dynamic Programming: Markov decision process falls under a class of algorithms called the model based algorithms. The main constituents of a Markov process involves the agent which interacts with the environment by taking actions from different states in which the agent finds itself. In a model based process there is a well defined probability distribution when going from one state to the other. This probability distribution is called the transition probability. The below figure depicts the transition probability of the robot we saw earlier. For example, if the robot is at state of low charge and it takes the action search, it would remain in the same state with probability and attains high charge with transition probability of 1-. Similarly, from a high state, when taking the action wait, the robot will remain in high charge with probability of 1.
Figure 9 : Markov Decision Process for a Robot ( Image source : Reinforcement Learning, Sutton & Barto )

Markov decision process entails that when moving from one state to the other, the history of all the states in which an agent was, doesn’t matter. All that matters is the current state. Markov decision processes are generally best implemented by a collection of algorithms called dynamic programming. Dynamic programming helps in computing the most optimal policies as a Markov decision process given a perfect model of the environment. What we mean by a perfect model of the environment is where we know all the states, actions and the transition probabilities when moving from one state to the other.

There are different use cases involving MDP process, some of the notable ones include determination of number of patients in a hospital, reducing wait time at intersections etc.

  • Monte Carlo Methods : Monte Carlo methods unlike dynamic programming and Markov decision processes, do not make assumptions on knowledge on the environment. Monte Carlo methods learns through experience. These methods rely on sampling sequences of states, actions and rewards to attain the most optimal solution.
  • Temporal difference Methods : Temporal difference methods can be said as a combination of dynamic programming methods and Monte Carlo methods. Temporal difference methods can learn from experience like Monte Carlo methods and they also can also estimate the value function based on earlier learning without waiting for the end of an episode. Due to its simplicity temporal difference methods are great for learning experiences derived from interaction with environment in an online mode. Temporal difference methods are great to make long term predictions like predicting customer purchases, weather patterns, election outcomes etc.
Figure 10 : Comparison of backup diagram for MC,TD & DP ( Image source : David Silver’s RL Course, lecture 4 )
  • Deep Reinforcement Learning methods : Deep reinforcement learning methods combine traditional reinforcement learning and deep learning techniques. One pre-requisite of traditional reinforcement learning is the understanding of states and making decisions on what actions to take from each state. However reinforcement learning gets constrained when the number of states become very huge as in the case of many of the online data sets. This is where deep reinforcement learning techniques comes in handy. Deep reinforcement learning algorithms are able to take large input sets, which has large state spaces and make decisions on what actions to take to optimize the end objective. Deep reinforcement learning methods have wide applications in robotic, natural language processing, computer vision, finance, healthcare to name a few.
Figure 11 : Deep Reinforcement Learning

Having got an overview of the types of reinforcement learning systems, let us look at how reinforcement learning approaches can be used for building recommendation systems.

Reinforcement learning for recommendation systems

User interactions with items are sequential and it has a rich context to it. For this reason the problem of predicting the best item to a user can also be viewed as a sequential decision problem. In the primer on reinforcement systems, we learned that in a reinforcement learning setting, an agent aims to maximize a numerical reward through interactions with an environment. Bringing this to the recommendation system context, it is like the recommendation system (agent) trying to recommend an item ( an action ) to the user to maximize the user satisfaction ( reward ).

Let us now look at some of the approaches in which reinforcement learning is used as recommendation systems.

  • Multi armed bandit based recommendation systems : Recommendation systems can learn policies or decisions on what to recommend to whom by broadly two approaches. The first one is the traditional offline learning mode which we explored at the start of this article. The next approach is the online learning mode where the recommendation system will suggest an item to the user based on the users context like time of day, place, history, previous interactions etc. One of the basic type of systems which implement the online system is the multi armed bandit approach. This approach will basically treat the recommendation task like pulling the levers of an armed bandit.
Figure 12 : Multi-Armed Bandit as Recommendation System
  • Normal reinforcement learning based recommendation systems : Many of the reinforcement learning approaches which we explored earlier like MDP, Monte Carlo and Temporal Difference are widely used as recommendation systems. One such example is in the use of MDP based recommendation systems for recommending songs to users. In this problem setting the states represents the list of songs to be recommended, the action is the act of listening to songs, the transition probability is the probability of selecting a particular song having listened to a song and the reward is the implicit feed back received when the user actually listens to the recommended song.
  • Deep Reinforcement Learning based recommendation systems : Deep reinforcement learning systems have the ability to learn multiple states and action spaces. In a typical personalized online recommendation systems the number of states and actions are quite large and deep reinforcement learning systems are good fit for such use cases. Take the case of an approach to recommend movies based on a framework called Deep Deterministic Policy Gradient Framework. In this use case, user preferences are used to learn a policy which will thereby be used to select the movies to be recommended for the user. The learning of the policy is done using the deep deterministic policy gradient framework, which enables learning policies dynamically. The dynamic policy vector is then applied on the candidate set of movies to get a personalized set of movies to the user.

There are different use cases and multiple approaches to use reinforcement learning systems as recommendation systems. We will deal with more sophisticated reinforcement learning based recommendation systems in future posts.

What Next ?

So far in this post we have taken a quick overview of the main concepts. Obviously the proof of the pudding is in the eating. So we will get to that in the next post.

As this series is based on the multi armed bandit approach for recommendation systems, we will get hands on programming experience with multi armed bandit problems. In the next post we will build a multi armed bandit problem formulation from scratch using Python and then implement some simulated experiments using multi armed bandits. The next post will be published next week. Please subscribe to this blog post to get notifications when the next post is published.

You can also subscribe to our Youtube channel for all the videos related to this series.

The complete code base for the series is in the Bayesian Quest Git hub repository

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, subscribe to our Youtube channel

I would also recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

The Data Science Workshop Book

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!

VIII : Build and deploy data science products: Machine translation application -Build and deploy using Flask

Source shutterstock.com

One measure of success will be the degree to which you build up others

This is the last post of the series and in this post we finally build and deploy our application we painstakingly developed over the past 7 posts . This series comprises of 8 posts.

  1. Understand the landscape of solutions available for machine translation
  2. Explore sequence to sequence model architecture for machine translation.
  3. Deep dive into the LSTM model with worked out numerical example.
  4. Understand the back propagation algorithm for a LSTM model worked out with a numerical example.
  5. Build a prototype of the machine translation model using a Google colab / Jupyter notebook.
  6. Build the production grade code for the training module using Python scripts.
  7. Building the Machine Translation application -From Prototype to Production : Inference process
  8. Building the Machine Translation application: Build and deploy using Flask : ( This post)

Over the last two posts we covered the factory model and saw how we could build the model during the training phase. We also saw how the model was used for inference. In this section we will take the results of these predictions and build an app using flask. We will progressively work through the different processes of building the application.

Folder Structure

In our journey so far we progressively built many files which were required for the training phase and the inference phase. Now we are getting into the deployment phase were we want to deploy the code we have built into an application. Many of the files which we have built during the earlier phases may not be required anymore in this phase. In addition, we want the application we deploy as light as possible for its performance. For this purpose it is always a good idea to create a seperate folder structure and a new virtual environment for deploying our application. We will only select the necessary files for the deployment purpose. Our final folder structure for this phase will look as follows

Let us progressively build this folder structure and the required files for building our machine translation application.

Setting up and Installing FLASK

When building an application in FLASK , it is always a good practice to create a virtual environment and then complete the application build process within the virtual environment. This way we can ensure that only application specific libraries and packages are deployed into the hosting service. You will see later on that creating a seperate folder and a new virtual environment will be vital for deploying the application in Heroku.

Let us first create a separate folder in our drive and then create a virtual environment within that folder. In a Linux based system, a seperate folder can be created as follows

$ mkdir mtApp

Once the new directory is created let us change directory into the mtApp directory and then create a virtual environment. A virtual environment can be created on Linux with Python3 with the below script

mtApp $ python3 -m venv mtApp

Here the second mtApp is the name of our virtual environment. Do not get confused with the directory we created with the same name. The virtual environment which we created can be activated as below

mtApp $ source mtApp/bin/activate

Once the virtual environment is enabled we will get the following prompt.

(mtApp) ~$

In addition you will notice that a new folder created with the same name as the virtual environment

Our next task is to install all the libraries which are required within the virtual environment we created.

(mtApp) ~$ pip install flask

(mtApp) ~$ pip install tensorflow

(mtApp) ~$ pip install gunicorn

That takes care of all the installations which are required to run our application. Let us now look through the individual folders and the files within it.

There would be three subfolders under the main application folder MTapp. The first subfolder factoryModel is a subset of the corrsponding folder we maintained during the training phase. The second subfolder mtApp is the one created when the virtual environment was created. We dont have to do anything with that folder. The third folder templates is a folder specifically for the flask application. The file app.py is the driver file for the flask application. Let us now looks into each of the folders.

Folder 1 : factoryModel:

The subfolders and files under the factoryModel folder are as shown below. These subfolders and its files are the same as what we have seen during the training phase.

The config folder contains the __init__.py file and the configuration file mt_config.py we used during the training and inference phases.

The output folder contains only a subset of the complete output folder we saw during the inference phase. We need only those files which are required to translate an input German string to English string. The model file we use is the one generated after the training phase.

The utils folder has the same helperFunctions script which we used during the training and inference phase.

Folder 2 : Templates :

The templates folder has two html templates which are required to visualise the outputs from the flask application. We will talk more about the contents of the html file in a short while along with our discussions on the flask app.

Flask Application

Now its time to get to the main part of this article, which is, building the script for the flask application. The code base for the functionalities of the application will be the same as what we have seen during the inference phase. The difference would be in terms of how we use the predictions and visualise them on to the web browser using the flask application.

Let us now open a new file and name is app.py. Let us start building the code in this file

'''
This is the script for flask application
'''

from tensorflow.keras.models import load_model
from factoryModel.config import mt_config as confFile
from factoryModel.utils.helperFunctions import *
from flask import Flask,request,render_template

# Initializing the flask application
app = Flask(__name__)

## Define the file path to the model
modelPath = confFile.MODEL_PATH

# Load the model from the file path
model = load_model(modelPath)

Lines 5-8 imports the required libraries for creating the application

Lines 11 creates the application object ‘app’ as an instance of the class ‘Flask’. The (__name__) variable passed to the Flask class is a predefined variable used in Python to set the name of the module in which it is used.

Line 14 we load the configuration file from the config folder.

Line 17 The model which we created during the training phase is loaded using the load_model() function in Keras.

Next we will load the required pickle files we saved after the training process. In lines 20-22 we intialize the paths to all the files and variables we saved as pickle files during the training phase. These paths are defined in the configuration file. Once the paths are initialized the required files and variables are loaded from the respecive pickle files in lines 24-27. We use the load_files() function we defined in the helper function script for loading the pickle files. You can notice that these steps are same as the ones we used during the inference process.

In the next lines we will explore the visualisation processes for flask application.

@app.route('/')
def home():
	return render_template('home.html')

Lines 29:31 is a feature called the ‘decorator’. A decorator is used to modify the function which comes after it. The function which follows the decorator is a very simple function which returns the html template for our landing page. The landing page of the application is a simple text box where the source language (German) has to be entered. The purpose of the decorator is to build a mapping between the function and the url for the landing page. The URL’s are defined through another important component called ‘routes’ . ‘Routes’ modules are objects which configures the webpages which receives inputs and displays the returned outputs. There are two ‘routes’ which are required for this application, one corresponding to the home page (‘/’) and the second one mapping to another webpage called ‘/translate. The way the decorator, the route and the associated function works together is as follows. The decorator first defines the relationship between the function and the route. The function returns the landing page and route shows the location where the landing page has to be displayed.

Next we will explore the next decorator which return the predictions

@app.route('/translate', methods=['POST', 'GET'])
def get_translation():
    if request.method == 'POST':

        result = request.form
        # Get the German sentence from the Input site
        gerSentence = str(result['input_text'])
        # Converting the text into the required format for prediction
        # Step 1 : Converting to an array
        gerAr = [gerSentence]
        # Clean the input sentence
        cleanText = cleanInput(gerAr)
        # Step 2 : Converting to sequences and padding them
        # Encode the inputsentence as sequence of integers
        seq1 = encode_sequences(Ger_tokenizer, int(Ger_stdlen), cleanText)
        # Step 3 : Get the translation
        translation = generatePredictions(model,Eng_tokenizer,seq1)
        # prediction = model.predict(seq1,verbose=0)[0]

        return render_template('result.html', trans=translation)

Line 33. Our application is designed to accept German sentences as input, translate it to English sentences using the model we built and output the prediction back to the webpage. By default, the routes decorator only receives input i.e ‘GET’ requests. In order to return the predicted words, we have to define a new method in the decorator route called ‘POST’. This is done through the parameters methods=['POST','GET'] in the decorator.

Line 34. is the main function which translates the input German sentences to English sentences and then display the predictions on to the webpage.

Line 35, defines the ‘if’ method to ascertain that there is a ‘POST’ method which is involved in the operation. The next line is where we define the web form which is used for getting the inputs from the application. Web forms are like templates which are used for receiving inputs from the users and also returning the output.

In Line 37 we define the request.form into a new variable called result. All the outputs from the web forms will be accessible through the variable result.There are two web forms which we use in the application ‘home.html’ and ‘result.html’.

By default the webforms have to reside in a folder called Templates. Before we proceed with the rest of the code within the function we have to understand the webforms. Therefore let us build them. Open a new file and name it home.html and copy the following code.

<!DOCTYPE html>

<html>
<title>Machine Translation APP</title>
<body>
<form action = "/translate" method= "POST">

	<h3> German Sentence: </h3>

	<th> <input name='input_text' type="text" value = " " /> </th>

	<p><input type = "submit" value = "submit" /></p>

</form>
</body>
</html>	

The prediction process in our application is initiated when we get the input German text from the ‘home.html’ form. In ‘home.html’ we define the variable name ( ‘input_text’ : line 10 in home.html) for getting the German text as input. A default value can also be mentioned using the variable value which will be over written when a new text is given as input. We also specify a submit button for submitting the input German sentence through the form, line 12.

Line 39 : As seen in line 37, the inputs from the web form will be stored in the variable result. Now to access the input text which is stored in a variable called ‘input_text’ within home.html, we have to call it as ‘input_text’ from the result variable ( result['input_text']. This input text is there by stored into a variable ‘gerSentence’ as a string.

Line 42 the string object we received from the earlier line is converted to a list as required during prediction process.

Line 44, we clean the input text using the cleanInput() function we import from the helperfunctions. After cleaning the text we need to convert the input text into a sequence of integers which is done in line 47. Finally in line 49, we generate the predicted English sentences.

For visualizing the translation we use the second html template result.html. Let us quickly review the template

<!DOCTYPE html>
<html>
<title>Machine Translation APP</title>

    <body>
          <h3> English Translation:  </h3>
            <tr>
                <th> {{ trans }} </th>
            </tr>
    </body>
</html>

This template is a very simple one where the only varible of interest is on line 8 which is the variable trans.

The translation generated is relayed to result.html in line 51 by assigning the translation to the parameter trans .

if __name__ == '__main__':
    app.debug = True
    app.run()

Finally to run the app, the app.run() method has to be invoked as in line 56.

Let us now execute the application on the terminal. To execute the application run $ python app.py on the terminal. Always ensure that the terminal is pointing to the virtual environment we initialized earlier.

When the command is executed you should expect to get the following screen

Click the url or copy the url on a browser to see the application you build come live on your browser.

Congratulations you have your application running on the browser. Keep entering the German sentences you want to translate and see how the application performs.

Deploying the application

You have come a long way from where you began. You have now built an application using your deep learning model. Now the next question is where to go from here. The obvious route is to deploy the application on a production server so that your application is accessible to users on the web. We have different deployment options available. Some popular ones are

  • Heroku
  • Google APP engine
  • AWS
  • Azure
  • Python Anywhere …… etc.

What ever be the option you choose, deploying an application of this size will be best achieved by subscribing a paid service on any of these options. However just to go through the motions and demonstrate the process let us try to deploy the application on the free option of Heroku.

Deployment Process on Heroku

Heroku offers a free version for deployment however there are restrictions on the size of the application which can be hosted as a free service. Unfortunately our application would be much larger than the one allowed on the free version. However, here I would like to demonstrate the process of deploying the application on Heroku.

Step 1 : Creating the Heroku account.

The first step in the process is to create an account with Heroku. This can be done through the link https://www.heroku.com/. Once an account is created we get access to a dashboard which lists all the applications which we host in the platform.

Step 2 : Configuring git

Configuring ‘git’ is vital for deploying applications to Heroku. Git has to be installed first to our local system to make the deployment work. Git can be installed by following instructions in the link https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.

Once ‘git’ is installed it has to be configured with your user name and email id.

$ git config –global user.name “user.name”

$ git config –global user.email userName@mail.com

Step 3 : Installing Heroku CLI

The next step is to install the Heroku CLI and the logging in to the Heroku CLI. The detailed steps which are involved for installing the Heroku CLI are given in this link

https://devcenter.heroku.com/articles/heroku-cli

If you are using Ubantu system you can install Heroku CLI using the script below

$ sudo snap install heroku --classic

Once Heroku is installed we need to log into the CLI once. This is done in the terminal with the following command

$ heroku login

Step 4 : Creating the Procfile and requirements.txt

There is a file called ‘Procfile’ in the root folder of the application which gives instructions on starting the application.

Procfile and requirements.txt in the application folder

The file can be created using any text editor and should be saved in the name ‘Procfile’. No extension should be specified for the file. The contents of the file should be as follows

web: gunicorn app:app --log-file

Another important pre-requisite for the Heroku application is a file called ‘requirements.txt’. This is a file which lists down all the dependencies which needs to be installed for running the application. The requirements.txt file can be created using the below command.

$ pip freeze > requirements.txt

Step 5 : Initializing git and copying the required dependent files to Heroku

The above steps creates the basic files which are required for running the application. The next task is to initialize git on the folder. To initialize git we need to go into the root folder where the app.py file exists and then initialize it with the below command

$ git init

Step 6 : Create application instance in Heroku

In order for git to push the application file to the remote Heroku server, an instance of the application needs to be created in Heroku. The command for creating the application instance is as shown below.

$ heroku create {application name}

Please replace the braces with the application name of your choice. For example if the application name you choose is 'gerengtran', it has to be enabled as follows

$ heroku create gerengtran

Step 7 : Pushing the application files to remote server

Once git is initialized and an instance of the application is created in Heroku, the application files can be set up in remote Heroku server by the following commands.

$ heroku git:remote -a {application name}

Please note that ‘application_name’ is the name of the application which you have chosen earlier. What ever name you choose will be the name of the application in Heroku. The external link to your application will be in the name which you choose here.

Step 8 : Deploying the application and making it available as a web app

The final step of the process is to complete the deployment on Heroku and making the application available as a web app. This process starts with the command to add all the changes which you made to git.

$ git add .

Please note that there is a full stop( ‘.’ ) as part of the script after ‘add’ with a space in between .

After adding all the changes, we need to commit all the changes before finally deploying the application.

$ git commit -am "First submission"

The deployment will be completed with the below script after which the application will be up and running as a web app.

$ git push heroku master

When the files are pushed, if the deployment is successful you will get a url which is the link to the application. Alternatively, you can also go to Heroku console and activate your application. Below is the view of your console with all the applications listed. The application with the red box is the application which has been deployed

If you click on the link of the application ( red box) you get the link where the application can be open.

When the open app button is clicked the application is opened in a browser.

Wrapping up the series

With this we have achieved a good milestone of building an application and deploying it on the web for others to consume. I am a strong believer that learning data science should be to enrich products and services. And the best way to learn how to enrich products and services is to build it yourselves at a smaller scale. I hope you would have gained a lot of confidence by building your application and then deploying them on the web. Before we bid adeau, to this series let us summarise what we have achieved in this series and list of the next steps

In this series we first understood the solution landscape of machine translation applications and then understood different architecture choices. In the third and fourth posts we dived into the mathematics of a LSTM model where we worked out a toy example for deriving the forward pass and backpropagation. In the subsequent posts we got down to the tasks of building our application. First we built a prototype and then converted it into production grade code. Finally we wrapped the functionalities we developed in a Flask application and understood the process of deploying it on Heroku.

You have definitely come a long way.

However looking back are there avenues for improvement ? Absolutely !!!

First of all the model we built is a simple one. Machine translation is a complex process which requires lot more sophisticated models for better results. Some of the model choices you can try out are the following

  1. Change the model architecture. Experiment with different number of units and number of layers. Try variations like bidirectional LSTM
  2. Use attention mechanisms on the LSTM layers. Attention mechanism is see to have given good performance on machine translation tasks
  3. Move away from sequence to sequence models and use state of the art models like Transformers.

The second set of optimizations you can try out are on the vizualisations of the flask application. The templates which are used here are very basic templates. You can further experiment with different templates and make the application visually attractive.

The final improvement areas are in the choices of deployment platforms. I would urge you to try out other deployment choices and let me know the results.

I hope all of you enjoyed this series. I definitely enjoyed writing this post. Hope it benefits you and enable you to improve upon the methods used here.

I will be back again with more practical application building series like this. Watch this space for more

You can download the code for the deployment process from the following link

https://github.com/BayesianQuest/MachineTranslation/tree/master/Deployment/MTapp

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, I would recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!

VII Build and deploy data science products: Machine translation application – From Prototype to Production for Inference process

Image source : macadamian.com

“To contrive is nothing! To consruct is something ! To produce is everything !”

Edward Rickenbacker

This is the seventh part of the series in which we continue our endeavour in building the inference process for our machine translation application. This series comprises of 8 posts.

  1. Understand the landscape of solutions available for machine translation
  2. Explore sequence to sequence model architecture for machine translation.
  3. Deep dive into the LSTM model with worked out numerical example.
  4. Understand the back propagation algorithm for a LSTM model worked out with a numerical example.
  5. Build a prototype of the machine translation model using a Google colab / Jupyter notebook.
  6. Build the production grade code for the training module using Python scripts.
  7. Building the Machine Translation application -From Prototype to Production : Inference process ( This post)
  8. Build the machine translation application using Flask and understand the process to deploy the application on Heroku

In the last post of the series we covered the training process. We built the model and then saved all the variables as pickle files. We will be using the model we developed during the training phase for the inference process. Let us dive in and look at the project structure, which would be similar to the one we saw in the last post.

Project Structure

Let us first look at the helper function file. We will be adding new functions and configuration variables to the file we introduced in the last post.

Let us first look at the configuration file.

Configuration File

Open the configuration file mt_config.py , we used in the last post and add the following lines.

# Define the path where the model is saved
MODEL_PATH = path.sep.join([BASE_PATH,'factoryModel/output/model.h5'])
# Defin the path to the tokenizer
ENG_TOK_PATH = path.sep.join([BASE_PATH,'factoryModel/output/eng_tokenizer.pkl'])
GER_TOK_PATH = path.sep.join([BASE_PATH,'factoryModel/output/deu_tokenizer.pkl'])
# Path to Standard lengths of German and English sentences
GER_STDLEN = path.sep.join([BASE_PATH,'factoryModel/output/ger_length.pkl'])
ENG_STDLEN = path.sep.join([BASE_PATH,'factoryModel/output/eng_length.pkl'])
# Path to the test sets
TEST_X = path.sep.join([BASE_PATH,'factoryModel/output/testX.pkl'])
TEST_Y = path.sep.join([BASE_PATH,'factoryModel/output/testY.pkl'])

Lines 14-23 we add the paths for many of the files and variables we created during the training process.

Line 14 is the path to the model file which was created after the training. We will be using this model for the inference process

Lines 16-17 are the paths to the English and German tokenizers

Lines 19-20 are the variables for the standard lengths of the German and English sequences

Lines 21-23 are the test sets which we will use to predict and evaluate our model.

Utils Folder : Helper functions

Having seen the configuration file, let us now review all the helper functions for the application. In the training phase we created a helper function file called helperFunctions.py. Let us go ahead and revisit that file and add more functions required for the application.

'''
This script lists down all the helper functions which are required for processing raw data
'''

from pickle import load
from numpy import argmax
from pickle import dump
from tensorflow.keras.preprocessing.sequence import pad_sequences
from numpy import array
from unicodedata import normalize
import string

# Function to Save data to pickle form
def save_clean_data(data,filename):
    dump(data,open(filename,'wb'))
    print('Saved: %s' % filename)

# Function to load pickle data from disk
def load_files(filename):
    return load(open(filename,'rb'))

Lines 5-11 as usual are the library packages which are required for the application.

Line 14 is the function to save data as a pickle file. We saw this function in the last post.

Lines 19-20 is a utility function to load a pickle file from disk. The parameter to this function is the path of the file.

In the last post we saw a detailed function for cleaning raw data to finally generate the training and test sets. For the inference process we need an abridged version of that function.

# Function to clean the input data
def cleanInput(lines):
    cleanSent = []
    cleanDocs = list()
    for docs in lines[0].split():
        line = normalize('NFD', docs).encode('ascii', 'ignore')
        line = line.decode('UTF-8')
        line = [line.translate(str.maketrans('', '', string.punctuation))]
        line = line[0].lower()
        cleanDocs.append(line)
    cleanSent.append(' '.join(cleanDocs))
    return array(cleanSent)

Line 23 initializes the cleaning function for the input sentences. In this function we assume that the input sentence would be a string and therefore in line 26 we split the string into individual words and iterate through each of the words. Lines 27-28 we normalize the input words to the ascii format. We remove all punctuations in line 29 and then convert the words to lower case in line 30. Finally we join inividual words to a string in line 32 and return the cleaned sentence.

The next function we will insert is the sequence encoder we saw in the last post. Add the following lines to the script

# Function to convert sentences to sequences of integers
def encode_sequences(tokenizer,length,lines):
    # Sequences as integers
    X = tokenizer.texts_to_sequences(lines)
    # Padding the sentences with 0
    X = pad_sequences(X,maxlen=length,padding='post')
    return X

As seen earlier the parameters are the tokenizer, the standard length and the source data as seen in Line 36.

The sentence is converted into integer sequences using the tokenizer as shown in line 38. The encoded integer sequences are made to standard length in line 40 using the padding function.

We will now look at the utility function to convert integer sequences to words.

# Generate target sentence given source sequence
def Convertsequence(tokenizer,source):
    target = list()
    reverse_eng = tokenizer.index_word
    for i in source:
        if i == 0:
            continue
        target.append(reverse_eng[int(i)])
    return ' '.join(target)

We initialize the function in line 44. The parameters to the function are the tokenizer and the source, a list of integers, which needs to be converted into the corresponding words.

In line 46 we define a reverse dictionary from the tokenizer. The reverse dictionary gives you the word in the vocabulary if you give the corresponding index.

In line 47 we iterate through each of the integers in the list . In line 48-49, we ignore the word if the index is 0 as this could be a padded integer. In line 50 we get the word corresponding to the index integer using the reverse dictionary and then append it to the placeholder list created earlier in line 45. All the words which are appended into the placeholder list are then joined together to a string in line 51 and then returned

Next we will review one of the most important functions, a function for generating predictions and the converting the predictions into text form. As seen from the post where we built the prototype, the predict function generates an array which has the same length as the number of maximum sequences and depth equal to the size of the vocabulary of the target language. The depth axis gives you the probability of words accross all the words of the vocabulary. The final predictions have to be transformed from this array format into a text format so that we can easily evaluate our predictions.

# Function to generate predictions from source data
def generatePredictions(model,tokenizer,data):
    prediction = model.predict(data,verbose=0)    
    AllPreds = []
    for i in range(len(prediction)):
        predIndex = [argmax(prediction[i, :, :], axis=-1)][0]
        target = Convertsequence(tokenizer,predIndex)
        AllPreds.append(target)
    return AllPreds

We initialize the function in line 54. The parameters to the function are the trained model, English tokenizer and the data we want to translate. The data to translate has to be in an array form of dimensions ( num of examples, sequence length).

We generate the prediction in line 55 using the model.predict() method. The predicted output object ( prediction) is an array of dimensions ( num_examples, sequence length, size of english vocabulary)

We initialize a list to store all the predictions on line 56.

Lines 57-58,we iterate through all the examples and then generate the index which has the maximum probability in the last axis of the prediction array. The last axis of the predictions array will be a probability distribution over the words of the target vocabulary. We need to get the index of the word which has the maximum probability. This is what we use the argmax function.

This image has an empty alt attribute; its file name is image-23.png

As shown in the representative figure above by taking the argmax of the last axis ( axis = -1) we obtain the index position where the probability of words accross all the words of the vocabulary is the greatest. The output we get from line 58 is a list of the indexes of the vocabulary where the probability is highest as shown in the list below

[ 5, 123, 4, 3052, 0]

In line 59 we convert the above list of integers to a string using the Convertsequence() function we saw earlier. All the predicted strings are then appended to a placeholder list and returned in lines 60-61

Inference Process

Having seen the helper functions, let us now explore the inference process. Let us open a new file and name it mt_Inference.py and enter the following code.

'''
This is the driver file for the inference process
'''

from tensorflow.keras.models import load_model
from factoryModel.config import mt_config as confFile
from factoryModel.utils.helperFunctions import *

## Define the file path to the model
modelPath = confFile.MODEL_PATH

# Load the model from the file path
model = load_model(modelPath)

We import all the required functions in lines 5-7. In line 7 we import all the helper functions we created above. We then initiate the path to the model from the configuration file in line 10.

Once the path to the model is initialized then it is the turn to load the model we saved during the training phase. In line 13 we load the saved model from the path using the Keras function load_model().

Next we load the required pickle files we saved after the training process.

# Get the paths for all the files and variables stored as pickle files
Eng_tokPath = confFile.ENG_TOK_PATH
Ger_tokPath = confFile.GER_TOK_PATH
testxPath = confFile.TEST_X
testyPath = confFile.TEST_Y
Ger_length = confFile.GER_STDLEN
# Load the tokenizer from the pickle file
Eng_tokenizer = load_files(Eng_tokPath)
Ger_tokenizer = load_files(Ger_tokPath)
# Load the standard lengths
Ger_stdlen = load_files(Ger_length)
# Load the test sets
testX = load_files(testxPath)
testY = load_files(testyPath)

On lines 16-20 we intialize the paths to all the files and variables we saved as pickle files during the training phase. These paths are defined in the configuration file. Once the paths are initialized the required files and variables are loaded from the respecive pickle files in lines 22-28. We use the load_files() function we defined in the helper function script for loading the pickle files.

The next step is to generate the predictions for the test set. We already defined the function for generating predictions as part of the helper functions script. We will be calling that function to generate the predictions.

# Generate predictions
predSent = generatePredictions(model,Eng_tokenizer,testX[0:20,:])

for i in range(len(testY[0:20])):
    targetY = Convertsequence(Eng_tokenizer,testY[i:i+1][0])
    print("Original sentence : {} :: Prediction : {}".format([targetY],[predSent[i]]))

On line 31 we generate the predictions on the test set using the generatePredictions() function. We provide the model , the English tokenizer and the first 20 sequences of the test set for generating the predictions.

Once the predictions are generated let us look at how good our predictions are by comparing it against the original sentence. In line 33-34 we loop through the first 20 target English integer sequences and convert them into the respective English sentences using the Convertsequence() function defined earlier. We then print out our predictions and the original sentence on line 35.

The output will be similar to the one we got during the prototype phase as we havent changed the model parameters during the training phase.

Predicting on our own sentences

When we predict on our own input sentences we have to preprocess the input sentence by cleaning it and then converting it into a sequence of integers. We have already made the required functions for doing that in our helper functions file. The next thing we want is a place to enter the input sentence. Let us provide our input sentence in our configuration file itself.

Let us open the configuration file mt_config.py and add the following at the end of the file.

######## German Sentence for Translation ###############

GER_SENTENCE = 'heute ist ein guter Tag'

In line 27 we define a configuration variable GER_SENTENCE to store the sentences we want to input. We have provided a string 'heute ist ein guter Tag' which means ‘Today is a good day’ as the input string. You are free to input any German sentence you want at this location. Please note that the sentence have to be inside quotes ' '.

Let us now look at how our input sentences can be translated using the inference process. Open the mt_inference.py file and add the following code below the existing code.

############# Prediction of your Own sentences ##################

# Get the input sentence from the config file
inputSentence = [confFile.GER_SENTENCE]

# Clean the input sentence
cleanText = cleanInput(inputSentence)

# Encode the inputsentence as sequence of integers
seq1 = encode_sequences(Ger_tokenizer,int(Ger_stdlen),cleanText)

print("[INFO] .... Predicting on own sentences...")

# Generate the prediction
predSent = generatePredictions(model,Eng_tokenizer,seq1)
print("Original sentence : {} :: Prediction : {}".format([cleanText[0]],predSent))

In line 40 we access the input sentence from the configuration file. We wrap the input string in a list [ ].

In line 43 we do a basic cleaning for the input sentence. We do it using the cleanInput() function we created in the helper function file. Next we encode the cleaned text as integer sequences in line 46. Finally we generate our prediction on line 51 and print out the results in line 52.

Wrapping up

Hurrah!!!! we have come to the end of the inference process. In this post you learned how to generate predictions on the test set. We also predicted our own sentences. We have come a long way and we are ready to make the final lap. Next we will make machine translation application using flask.

Go to article 8 of this series : Building the machine translation application using Flask and deploying on Heroku

You can download the notebook for the inference process using the following link

https://github.com/BayesianQuest/MachineTranslation/tree/master/Production

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, I would recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!

VI : Build and deploy data science products: Machine translation application – From prototype to production. Introduction to the factory model

Source: brainyquote.com

This is the sixth part of the series where we continue on our pursuit to build a machine translation application. In this post we embark on a transformation process where in we transform our prototype into a production grade code.

This series comprises of 8 posts.

  1. Understand the landscape of solutions available for machine translation
  2. Explore sequence to sequence model architecture for machine translation.
  3. Deep dive into the LSTM model with worked out numerical example.
  4. Understand the back propagation algorithm for a LSTM model worked out with a numerical example.
  5. Build a prototype of the machine translation model using a Google colab / Jupyter notebook.
  6. Build the production grade code for the training module using Python scripts.( This post)
  7. Building the Machine Translation application -From Prototype to Production : Inference process
  8. Build the machine translation application using Flask and understand the process to deploy the application on Heroku

In this section we will see how we can take the prototype which we built in the last article into a production ready code. In the prototype building phase we were developing our code on a Jupyter/Colab notebook. However if we have to build an application and deploy it, notebooks would not be very effective. We have to convert the code we built on the notebook into production grade code using python scripts. We will be progressively building the scripts using a process, I call, as the factory model. Let us see what a factory model is.

Factory Model

A Factory model is a modularized process of generating business outcomes using machine learning models. There are some distinct phases in the process which includes

  1. Ingestion/Extraction process : Process of getting data from source systems/locations
  2. Transformation process : Transformation process entails transforming raw data ingested from multiple sources into a form fit for the desired business outcome
  3. Preprocessing process: This process involves basic level of cleaning of the transformed data.
  4. Feature engineering process : Feature engineering is the process of converting the preprocessed data into features which are required for model training.
  5. Training process : This is the phase where the models are built from the featurized data.
  6. Inference process : The models which were built during the training phase is then utilized to generate the desired business outcomes during the inference process.
  7. Deployment process : The results of the inference process will have to be consumed by some process. The consumer of the inferences could be a BI report or a web service or an ERP application or any downstream applications. There is a whole set of process which is involved in enabling the down stream systems to consume the results of the inference process. All these steps are called the deployment process.

Needless to say all these processes are supported by an infrastructure layer which is also called the data engineering layer. This layer looks at the most efficient and effective way of running all these processes through modularization and parallelization.

All these processes have to be designed seamlessly to get the business outcomes in the most effective and efficient way. To take an analogy its like running a factory where raw materials gets converted into a finished product and thereby gets consumed by the end customers. In our case, the raw material is the data, the product is the model generated from the training phase and the consumers are any business process which uses the outcomes generated from the model.

Let us now see how we can execute the factory model to generate the business outcomes.

Project Structure

Before we dive deep into the scripts, let us look at our project structure.

Our root folder is the Machine Translation folder which contains two sub folders Data and factoryModel. The Data subfolder contains the raw data. The factoryModel folder contains different subfolders containing scripts for our processes. We will be looking at each of these scripts in detail in the subsequent sections. Finally we have two driver files mt_driver_train.py which is the driver file for the training process and mt_Inference.py which is the driver file for the inference process.

Let us first dive into the training phase scripts.

Training Phase

The first part of the factory model is the training phase which comprises of all the processes till the creation of the model. We will start off by building the supporting files and folders before we get into the driver file. We will first start with the configuration file.

Configuration file

When we were working with the notebook files, we were at a liberty to change the pararmeters we wanted to vary, say for example the path to the input file or some hyperparameters like the number of dimensions of the embedding vector, on the notebook itself. However when an application is in production we would not have the luxury to change the parameters and hyperparameters directly in the code base. To get over this problem we use the configuration files. We consolidate all the parameters and hyperparameters of the model on to the configuration file. All processes will pick the parameters from the configuration file for further processing.

The configuration file will be inside the config folder. Let us now build the configuration file.

Open a word editor like notepad++ or any other editor of your choice and open a new file and name it mt_config.py. Let us start adding the below code in this file.

'''
This is the configuration file for storing all the application parameters
'''

import os
from os import path


# This is the base path to the Machine Translation folder
BASE_PATH = '/media/acer/7DC832E057A5BDB1/JMJTL/Tomslabs/BayesianQuest/MT/MachineTranslation'
# Define the path where data is stored
DATA_PATH = path.sep.join([BASE_PATH,'Data/deu.txt'])

Lines 5 and 6, we import the necessary library packages.

Line 10, we define the base path for the application. You need to change this path based on your specific path to the application. Once the base path is set, the rest of the paths will be derived out from it. In Line 12, we define the path to the raw data set folder. Note that we just join the name of the data folder and the raw text file with the base path to get the data path. We will be using the data path to read in the raw data.

In the config folder there will be another file named __init__.py . This is a special file which tells Python to treat the config folder as part of the package. This file inside this folder will be an empty file with no code in it

Loading Data

The next helper files we will build are those for loading raw files and preprocessing. The code we use for these purposes are the same code which we used for building the prototype. This file will reside in the dataLoader folder

In your text editor open a new file and name it as datasetloader.py and then add the below code into it

'''
Factory Model for Machine translation preprocessing.
This is the script for loading the data and preprocessing data
'''

import string
import re
from pickle import dump
from unicodedata import normalize
from numpy import array

# Creating the class to load data and then do the preprocessing as sequence of steps

class textLoader:
	def __init__(self , preprocessors = None):
		# This init method is to store the text preprocessing pipeline
		self.preprocessors = preprocessors
		# Initializing the preprocessors as an empty list of the preprocessors are None
		if self.preprocessors is None:
			self.preprocessors = []

	def loadDoc(self,filepath):
		# This is the function to read the file from the path provided
		# Open the file
		file = open(filepath,mode = 'rt',encoding = 'utf-8')
		# Reading the text
		text = file.read()
		#Once the file is read, applying the preprocessing steps one by one
		if self.preprocessors is not None:
			# Looping over all the preprocessing steps and applying them on the text data
			for p in self.preprocessors:
				text = p.preprocess(text)
				
		# Closing the file
		file.close()
				
		# Returning the text after all the preprocessing
		return text

Before addressing the code block line by line, let us get a big picture perspective of what we are trying to accomplish. When working with text you would have realised that different sources of raw text requires different preprocessing treatments. A preprocessing method which we have used for one circumstance may not be warranted in a different one. So in this code block we are building a template called textLoader, which reads in raw data and then applies different preprocessing steps like a pipeline as the situation warrants. Each of the individual preprocessing steps would be defined seperately. The textLoader class first reads in the data and then applies the selected preprocessing one after the other. Let us now dive into the details of the code.

Lines 6 to 10 imports all the necessary library packages for the process.

Line 14 we define the textLoader class. The constructor in line 15 takes the text preprocessor pipeline as the input. The prepreprocessors are given as lists. The default value is taken as None. The preprocessors provided in the constructor is initialized in line 17. Lines 19-20 initializes an empty list if the preprocessor argument is none. If you havent got a handle of why the preprocessors are defined this way, it is ok. This will be more clear when we define the actual preprocessors. Just hang on till then.

From line 22 we start the first function within this class. This function is to read the raw text and the apply the processing pipeline. Lines 25 – 27, where we open the text file and read the text is the same as what we defined during the prototype phase in the last post. We do a check to see if we have defined any preprocessor pipeline in line 29. If there are any pipeline defined those are applied on the text one by one in lines 31-32. The method .preprocess is specific to each of the preprocessor in the pipeline. This method would be clear once we take a look at each of the preprocessors. We finally close the raw file and the return the processed text in lines 35-38.

The __init__.py file inside this folder will contain the following line for importing the textLoader class from the datasetloader.py file for any calling script.

from .datasetloader import textLoader

Processing Data : Preprocessing pipeline construction

Next we will create the files for preprocessing the text. In the last section we saw how the raw data was loaded and then preprocessing pipeline was applied. In this section we look into the preprocessing pipeline. The folder structure will be as shown in the figure.

There would be three preprocessors classes for processing the raw data.

  • SentenceSplit : Preprocessor to split raw text into pair of English and German sentences. This class is inside the file splitsentences.py
  • cleanData : Preprocessor to apply cleaning steps like removing punctuations, removing whitespaces which is included in the datacleaner.py file.
  • TrainMaker : Preprocessor to tokenize text and then finally prepare the train and validation sets contined in the tokenizer.py file

Let us now dive into each of the preprocessors.

Open a new file and name it splitsentences.py. Add the following code to this file.

'''
Script for preprocessing of text for Machine Translation
This is the class for splitting the text into sentences
'''

import string
from numpy import array

class SentenceSplit:
	def __init__(self,nrecords):
		# Creating the constructor for splitting the sentences
		# nrecords is the parameter which defines how many records you want to take from the data set
		self.nrecords = nrecords
		
	# Creating the new function for splitting the text
	def preprocess(self,text):
		sen = text.strip().split('\n')
		sen = [i.split('\t') for i in sen]
		# Saving into an array
		sen = array(sen)
		# Return only the first two columns as the third column is metadata. Also select the number of rows required
		return sen[:self.nrecords,:2]

This is the first or our preprocessors. This preprocessor splits the raw text and finally outputs an array of English and German sentence pairs.

After we import the required packages in lines 6-7, we define the class in line 9. We pass a variable nrecords to the constructor to subset the raw text and select number of rows we want to include for training.

The preprocess function starts in line 16. This is the function which we were accessing in line 32 of the textLoader class which we discussed in the last section. The rest is the same code we have used in the prototype building phase which includes

  • Splitting the text into sentences in line 17
  • Splitting each sentece on tab spaces to get the German and English sentences ( line 18)

Finally we convert the processed sentences into an array and return only the first two columns of the array. Please note that the third column contains metadata of each line and therefore we exclude it from the returned array. We also subset the array based on the number of records we want.

Now that the first preprocessor is complete,let us now create the second preprocessor.

Open a new file and name it datacleaner.py and copy the below code.

'''
Script for preprocessing data for Machine Translation application
This is the class for removing the punctuations from sentences and also converting it to lower cases
'''

import string
from numpy import array
from unicodedata import normalize

class cleanData:
	def __init__(self):
		# Creating the constructor for removing punctuations and lowering the text
		pass
		
	# Creating the function for removing the punctuations and converting to lowercase
	def preprocess(self,lines):
		cleanArray = list()
		for docs in lines:
			cleanDocs = list()
			for line in docs:
				# Normalising unicode characters
				line = normalize('NFD', line).encode('ascii', 'ignore')
				line = line.decode('UTF-8')
				# Tokenize on white space
				line = line.split()
				# Removing punctuations from each token
				line = [word.translate(str.maketrans('', '', string.punctuation)) for word in line]
				# convert to lower case
				line = [word.lower() for word in line]
				# Remove tokens with numbers in them
				line = [word for word in line if word.isalpha()]
				# Store as string
				cleanDocs.append(' '.join(line))
			cleanArray.append(cleanDocs)
		return array(cleanArray)

This preprocessor is to clean the array of German and English sentences we received from the earlier preprocessor. The cleaning steps are the same as what we have seen in the previous post. Let us quickly dive in and understand the code block.

We start of by defining the cleanData class in line 10. The preprocess method starts in line 16 with the array from the previous preprocessing step as the input. We define two placeholder lists in line 17 and line 19. In line 20 we loop through each of the sentence pair of the array and the carry out the following cleaning operations

  • Lines 22-23, normalise the text
  • Line 25 : Split the text to remove the whitespaces
  • Line 27 : Remove punctuations from each sentence
  • Line 29: Convert the text to lower case
  • Line 31: Remove numbers from text

Finally in line 33 all the tokens are joined together and appended into the cleanDocs list. In line 34 all the individual sentences are appended into the cleanArray list and converted into an array which is returned in line 35.

Let us now explore the third preprocessor.

Open a new file and name it tokenizer.py . This file is pretty long and therefore we will go over it function by function. Let us explore the file in detail

'''
This class has methods for tokenizing the text and preparing train and test sets
'''

import string
import numpy as np
from numpy import array
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split


class TrainMaker:
	def __init__(self):
		# Creating the constructor for creating the tokenizers
		pass
	
	# Creating an internal function for tokenizing the text	
	def tokenMaker(self,text):
		tokenizer = Tokenizer()
		tokenizer.fit_on_texts(text)
		return tokenizer	

We down load all the required packages in lines 5-10, after which we define the constructor in lines 13-16. There is nothing going on in the constructor so we can conveniently pass it over.

The first function starts on line 19. This is a function we are familiar with in the previous post. This function fits the tokenizer function on text. The first step is to instantiate the tokenizer object in line 20 and then fit the tokenizer object on the provided text in line 21. Finally the tokenizer object which is fit on the text is returned in line 22. This function will be used for creating the tokenizer dictionaries for both English and German text.

The next function which we will see is the sequenceMaker. In the previous post we saw how we convert text as sequence of integers. The sequenceMaker function is used for this task.

		
	# Creating an internal function for encoding and padding sequences
	
	def sequenceMaker(self,tokenizer,stdlen,text):
		# Encoding sequences as integers
		seq = tokenizer.texts_to_sequences(text)
		# Padding the sequences with respect standard length
		seq = pad_sequences(seq,maxlen=stdlen,padding = 'post')
		return seq

The inputs to the sequenceMaker function on line 26 are the tokenizer , the maximum length of a sequence and the raw text which needs to be converted to sequences. First the text is converted to sequences of integers in line 28. As the sequences have to be of standard legth, they are padded to the maximum length in line 30. The standard length integer sequences is then returned in line 31.

		
	# Creating another function to find the maximum length of the sequences	
	def qntLength(self,lines):
		doc_len = []
		# Getting the length of all the language sentences
		[doc_len.append(len(line.split())) for line in lines]
		return np.quantile(doc_len, .975)

The next function we will define is the function to find the quantile length of the sentences. As seen from the previous post we made the standard length of the sequences equal to the 97.5 % quantile length of the respective text corpus. The function starts in line 34 where the complete text is given as input. We then create a placeholder in line 35. In line 37 we parse through each of the line and the find the total length of the sentence. The length of each sentence is stored in the placeholder list we created earlier. Finally in line 38, the 97.5 quantile of the length is returned to get the standard length.

		
	# Creating the function for creating tokenizers and also creating the train and test sets from the given text
	def preprocess(self,docArray):
		# Creating tokenizer forEnglish sentences
		eng_tokenizer = self.tokenMaker(docArray[:,0])
		# Finding the vocabulary size of the tokenizer
		eng_vocab_size = len(eng_tokenizer.word_index) + 1
		# Creating tokenizer for German sentences
		deu_tokenizer = self.tokenMaker(docArray[:,1])
		# Finding the vocabulary size of the tokenizer
		deu_vocab_size = len(deu_tokenizer.word_index) + 1
		# Finding the maximum length of English and German sequences
		eng_length = self.qntLength(docArray[:,0])
		ger_length = self.qntLength(docArray[:,1])
		# Splitting the train and test set
		train,test = train_test_split(docArray,test_size = 0.1,random_state = 123)
		# Calling the sequence maker function to create sequences of both train and test sets
		# Training data
		trainX = self.sequenceMaker(deu_tokenizer,int(ger_length),train[:,1])
		trainY = self.sequenceMaker(eng_tokenizer,int(eng_length),train[:,0])
		# Validation data
		testX = self.sequenceMaker(deu_tokenizer,int(ger_length),test[:,1])
		testY = self.sequenceMaker(eng_tokenizer,int(eng_length),test[:,0])
		return eng_tokenizer,eng_vocab_size,deu_tokenizer,deu_vocab_size,docArray,trainX,trainY,testX,testY,eng_length,ger_length

We tie all the earlier functions in the preprocess method starting in line 41. The input to this function is the English, German sentence pair as array. The various processes under this function are

  • Line 43 : Tokenizing English sentences using the tokenizer function created in line 19
  • Line 45 : We find the vocabulary size for the English corpus
  • Lines 47-49 the above two processes are repeated for German corpus
  • Lines 51-52 : The standard lengths of the English and German senetences are found out
  • Line 54 : The array is split to train and test sets.
  • Line 57 : The input sequences for the training set is created using the sequenceMaker() function. Please note that the German sentences are the input variable ( TrainX).
  • Line 58 : The target sequence which is the English sequence is created in this step.
  • Lines 60-61: The input and target sequences are created for the test set

All the variables and the train and test sets are returned in line 62

The __init__.py file inside this folder will contain the following lines

from .splitsentences import SentenceSplit
from .datacleaner import cleanData
from .tokenizer import TrainMaker

That takes us to the end of the preprocessing steps. Let us now start the model building process.

Model building Scripts

Open a new file and name it mtEncDec.py . Copy the following code into the file.

'''
This is the script and template for different models.
'''

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Embedding
from tensorflow.keras.layers import RepeatVector
from tensorflow.keras.layers import TimeDistributed

class ModelBuilding:
	@staticmethod
	def EncDecbuild(in_vocab,out_vocab, in_timesteps,out_timesteps,units):
		# Initializing the model with Sequential class
		model = Sequential()
		# Initiating the embedding layer for the text
		model.add(Embedding(in_vocab, units, input_length=in_timesteps, mask_zero=True))
		# Adding the first LSTM layer
		model.add(LSTM(units))
		# Using the RepeatVector to map the input sequence length to output sequence length
		model.add(RepeatVector(out_timesteps))
		# Adding the second layer of LSTM 
		model.add(LSTM(units, return_sequences=True))
		# Adding the fully connected layer with a softmax layer for getting the probability
		model.add(TimeDistributed(Dense(out_vocab, activation='softmax')))
		# Compiling the model
		model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
		# Printing the summary of the model
		model.summary()
		return model

The model building scripts is straight forward. Here we implement the encoder decoder model we described extensively in the last post.

We start by importing all the necessary packages in lines 5-10. We then get to the meat of the model by defining the ModelBuilding class in line 12. The model we are using for our application is defined through a function EncDecbuild in line 14. The inputs to the function are the

  • in_vocab : This is the size of the German vocabulary
  • out_vocab : This is the size of the Enblish vocabulary
  • in_timesteps : The standard sequence length of the German sentences
  • out_timesteps : Standard sequence length of Enblish sentences
  • units : Number of hidden units for the LSTM layers.

The progressive building of the model was covered extensively in the last post. Let us quickly run through the same here

  • Line 16 we initialize the sequential class
  • The next layer is the Embedding layer defined in line 18. This layer converts the text to word embedding vectors. The inputs are the German vocabulary size, the dimension required for the word embeddings and the sequence length of the input sequences. In this example we have kept the dimension of the word embedding same as the number of units of LSTM. However this is a parameter which can be experimented with.
  • Line 20, we initialize our first LSTM unit.
  • We then perform the Repeat vector operation in Line 22 so as to make the mapping between the encoder time steps and decoder time steps
  • We add our second LSTM layer for the decoder part in Line 24.
  • The next layer is the dense layer whose output size is equal to the English vocabulary size.(Line 26)
  • Finally we compile the model using ‘adam’ optimizer and then summarise the model in lines 28-30

So far we explored the file ecosystem for our application. Next we will tie all these together in the driver program.

Driver Program

Open a new file and name it mt_driver_train.py and start adding the following code blocks.

'''
This is the driver file which controls the complete training process
'''

from factoryModel.config import mt_config as confFile
from factoryModel.preprocessing import SentenceSplit,cleanData,TrainMaker
from factoryModel.dataLoader import textLoader
from factoryModel.models import ModelBuilding
from tensorflow.keras.callbacks import ModelCheckpoint
from factoryModel.utils.helperFunctions import *

## Define the file path to input data set
filePath = confFile.DATA_PATH

print('[INFO] Starting the preprocessing phase')

## Load the raw file and process the data
ss = SentenceSplit(50000)
cd = cleanData()
tm = TrainMaker()

Let us first look at the library file importing part. In line 5 we import the configuration file which we defined earlier. Please note the folder structure we implemented for the application. The configuration file is imported from the config folder which is inside the folder named factoryModel. Similary in line 6 we import all three preprocessing classes from the preprocessing folder. In line 7 we import the textLoader class from the dataLoader folder and finally in line 8 we import the ModelBuilding class from the models folder.

The first task we will do is to get the path of the files which we defined in the configuration file. We get the path to the raw data in line 13.

Lines 18-20, we instantiate the preprocessor classes starting with the SentenceSplit, cleanData and finally the trainMaker classes. Please note that we pass a parameter to the SentenceSplit(50000) class to indicate that we want only 50000 rows of the raw data, for processing.

Having seen the three preprocessing classes, let us now see how these preprocessors are tied together in a pipeline to be applied sequentially on the raw text. This is achieved in next code block

# Initializing the data set loader class and then executing the processing methods
tL = textLoader(preprocessors = [ss,cd,tm])
# Load the raw data, preprocess it and create the train and test sets
eng_tokenizer,eng_vocab_size,deu_tokenizer,deu_vocab_size,text,trainX,trainY,testX,testY,eng_length,ger_length = tL.loadDoc(filePath)

Line 21 we instantiate the textLoader class. Please note that all the preprocessing classes are given sequentially in a list as the parameters to this class. This way we ensure that each of the preprocessors are implemented one after the other when we implement the textLoader class. Please take some time to review the class textLoader earlier in the post to understand the dynamics of the loading and preprocessing steps.

In Line 23 we implement the loadDoc function which takes the path of the data set as the input. There are lots of processes which goes on in this method.

  • First loads the raw text using the file path provided.
  • On the raw text which is loaded, the three preprocessors are implemented one after the other
  • The last preprocessing step returns all the required data sets like the train and test sets along with the variables we require for modelling.

We now come to the end of the preprocessing step. Next we take the preprocessed data and train the model.

Training the model

We have already built all the necessary scripts required for training. We will tie all those pieces together in the training phase. Enter the following lines of code in our script

### Initiating the training phase #########
# Initialise the model
model = ModelBuilding.EncDecbuild(int(deu_vocab_size),int(eng_vocab_size),int(ger_length),int(eng_length),256)
# Define the checkpoints
checkpoint = ModelCheckpoint('model.h5',monitor = 'val_loss',verbose = 1, save_best_only = True,mode = 'min')
# Fit the model on the training data set
model.fit(trainX,trainY,epochs = 50,batch_size = 64,validation_data=(testX,testY),callbacks = [checkpoint],verbose = 2)

In line 34, we initialize the model object. Please note that when we built the script ModelBuilding was the name of the class and EncDecbuild was the method or function under the class. This is how we initialize the model object in line 34. The various parameter we give are the German and English vocabulary sizes, sequence lenghts of the German and English senteces and the number of units for LSTM ( which is what we adopt for the embedding size also). We define the checkpoint variables in line 36.

We start the model fitting in line 38. At the end of the training process the best model is saved in the path we have defined in the configuration file.

Saving the other files and variables

Once the training is done the model file is stored as a 'model.h5‘ file. However we need to save other files and variables as pickle files so that we utilise them during our inference process. We will create a script where we store all such utility functions for saving data. This script will reside in the utils folder. Open a new file and name it helperfunctions.py and copy the following code.

'''
This script lists down all the helper functions which are required for processing raw data
'''

from pickle import load
from numpy import argmax
from tensorflow.keras.models import load_model
from pickle import dump

def save_clean_data(data,filename):
    dump(data,open(filename,'wb'))
    print('Saved: %s' % filename)

Lines 5-8 we import all the necessary packages.

The first function we will be creating is to dump any files as pickle files which is initiated in line 10. The parameters are the data and the filename of the data we want to save.

Line 11 dumps the data as pickle file with the file name we have provided. We will be using this utility function to save all the files and variables after the training phase.

In our training driver file mt_driver_train.py add the following lines

### Saving the tokenizers and other variables as pickle files
save_clean_data(eng_tokenizer,'eng_tokenizer.pkl')
save_clean_data(eng_vocab_size,'eng_vocab_size.pkl')
save_clean_data(deu_tokenizer,'deu_tokenizer.pkl')
save_clean_data(deu_vocab_size,'deu_vocab_size.pkl')
save_clean_data(trainX,'trainX.pkl')
save_clean_data(trainY,'trainY.pkl')
save_clean_data(testX,'testX.pkl')
save_clean_data(testY,'testY.pkl')
save_clean_data(eng_length,'eng_length.pkl')
save_clean_data(ger_length,'ger_length.pkl')

Lines 42-52, we save all the variables we received from line 24 as pickle files.

Executing the script

Now that we have completed all the scripts, let us go ahead and execute the scripts. Open a terminal and give the following command line arguments to run the script.

$ python mt_driver_train.py

All the scripts will be executed and finally the model files and other variables will be stored on disk. We will be using all the saved files in the inference phase. We will address the inference phase in the next post of the series.

Go to article 7 of this series : From prototype to production: Inference Process

You can download the notebook for the prototype using the following link

https://github.com/BayesianQuest/MachineTranslation/tree/master/Production

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, I would recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!

V : Build and deploy data science products: Machine translation application-Develop the prototype

Source:boagworld.com

”Prototyping is the conversation you have with your ideas”

Tom Wujec

This is the fifth part of the series where we see our theoretical foundation on machine translation come to fruition. This series comprises of 8 posts.

  1. Understand the landscape of solutions available for machine translation
  2. Explore sequence to sequence model architecture for machine translation.
  3. Deep dive into the LSTM model with worked out numerical example.
  4. Understand the back propagation algorithm for a LSTM model worked out with a numerical example.
  5. Build a prototype of the machine translation model using a Google colab / Jupyter notebook.( This post)
  6. Build the production grade code for the training module using Python scripts.
  7. Building the Machine Translation application -From Prototype to Production : Inference process
  8. Build the machine translation application using Flask and understand the process to deploy the application on Heroku

In the previous 4 posts we understood the solution landscape for machine translation ,explored different architecture choices for sequence to sequence models and did a deep dive into the forward pass and back propagation algorithm for LSTMs. Having set a theoretical foundation on the application, it is time to build a prototype of the machine translation application. We will be building the prototype using a Google Colab / Jupyter notebook.

Building the prototype

The prototype building phase will consist of the following steps.

  1. Loading the raw data
  2. Preprocessing the raw data for machine translation
  3. Preparing the train and test sets
  4. Building the encoder – decoder architecture
  5. Training the model
  6. Getting the predictions

Let us get started in building the prototype of the application on a notebook

Downloading the raw text

Let us first grab the raw data for this application. The data can be downloaded from the link below.

http://www.manythings.org/anki/deu-eng.zip

This is also available in the github repository. The raw text consists of English sentences paired with the corresponding German sentence. Once the data text file is downloaded let us upload the data in our Google drive. If you do not want to do the prototype in Colab, you can download it in your local drive and then use a Jupyter notebook also for the purpose.

Preprocessing the text

Before starting the processes, let us import all the packages we will be using for the process

import string
import re
from numpy import array, argmax, random, take
from numpy.random import shuffle
import pandas as pd
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Embedding, RepeatVector
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import load_model
from tensorflow.keras import optimizers
import matplotlib.pyplot as plt
% matplotlib inline
pd.set_option('display.max_colwidth', 200)
from pickle import dump
from unicodedata import normalize
from tensorflow.keras.models import load_model

The raw text which we have downloaded needs to be opened and progressively preprocessed through series of processing steps to ultimately get the train and test set which we require for building our models. Let us first define the path for the text, so as to take it from the google drive. This path has to be changed by you based on the path in which you load the data

# Define the path to the raw data set 
fileurl = '/content/drive/My Drive/Bayesian Quest/deu.txt'

Once the path is defined, let us read the text data.

# open the file 
file = open(fileurl, mode='rt', encoding='utf-8') 
# read all text 
text = file.read()

The text which is read from the text file would be in the format shown below

text[0:200]
Output of first 200 characters of text

From the output we can see that each record is seperated by a line (\n) and within each record the data we want is seperated by tabs (\t).So we can first split each record on new lines (\n) and after that each line we split on the tabs (\t) to get the data in the format we want

# Split the text into individual lines
lines = text.strip().split('\n')
# Splitting each line based on tab spaces and creating a list
lines = [line.split('\t') for line in lines]
# Visualizing first 5 lines
lines[0:5]

We can see that the processed records are stored as lists with each list containing an enlish word, its German translation and some metadata about the data. Let us store these lists as an array for convenience and then display the shape of the array.

# Storing the lines into an array
mtData = array(lines)
# Displaying the shape of the array
print(mtData.shape)
Shape of array

All the above steps we can represent as a function. Let us construct the function which will be used to load the data and do basic preprocessing of the data.

# function to read raw text file
def read_text(filename):
    # open the file
    file = open(filename, mode='rt', encoding='utf-8')
    # read all text
    text = file.read()
    
    # Split the text into individual lines
    lines = text.strip().split('\n')
    # Splitting each line based on tab spaces and creating a list
    lines = [line.split('\t') for line in lines]

    file.close()
    return array(lines)

We can call the function to load the data and convert it into an array of English and German sentences. We can also see that the raw data has more than 200,000 rows and three columns. We dont require the third column and therefore we can eliminate them. In addition processing all rows would also be computationally expensive. Let us take the first 50000 rows. However this decision is left to you on how many rows you want based on the capacity of your machine.

# Reading the data using the function
mtData = read_text(fileurl)
# Taking only 50000 rows of data
mtData = mtData[:50000,:2]
print(mtData.shape)
mtData[0:10]

With the array format, the data is in a neat format with the first column being English and the second one the corresponding German sentence. However if you notice the text, there are lot of punctuations and other characters which are unwanted. We also need to standardize the text to lower case. Let us now crank up our cleaning process. The following are the processes which we will follow

  1. Normalize all unicode characters,which are special characters found in a language, to its corresponding ascii format. We will be using a library called ‘unicodedata’ for this normalization.
  2. Tokenize the string to individual words
  3. Convert all the characters to lower case
  4. Remove all punctuations from the text
  5. Remove all non alphabets from text

Since there are multiple processes involved we will be wrapping all these processes in a function. Let us look at the code which implements this.

# Cleaning the document for all unwanted characters

def cleanDocs(lines):
  cleanArray = list()
  for docs in lines:
    cleanDocs = list()
    for line in docs:
      # Normalising unicode characters
      line = normalize('NFD', line).encode('ascii', 'ignore')
      line = line.decode('UTF-8')
      # Tokenize on white space
      line = line.split()
      # Removing punctuations from each token
      line = [word.translate(str.maketrans('', '', string.punctuation)) for word in line]
      # convert to lower case
      line = [word.lower() for word in line]
      # Remove tokens with numbers in them
      line = [word for word in line if word.isalpha()]
      # Store as string
      cleanDocs.append(' '.join(line))
    cleanArray.append(cleanDocs)
  return array(cleanArray)

The input to the function is the array which we created in the earlier step. We first initialize some empty lists to store the processed text in Line 3.

Lines 5 – 7, we loop through each row ( docs) and then through each column (line) of the row. The first process is to normalize the special characters . This is done through the normalize function available in the ‘unicodedata’ package. We use a normalization method called ‘NFD’ which maintains the same form of the characters in lines 9-10. The next process is to tokenize the string to individual words by applying the split() function in line 12. We then proceed to remove all unwanted punctuations using the translate() function in line 14 . After this process we convert the text to lower case and then retain only the charachters which are alphabets using the isalpha() function in lines 16-18. We join the individual columns within a row using the join() function and then store the processed row in the ‘cleanArray’ list in lines 20-21. The final output after the whole process looks quite clean and is ready for further processing.

# Cleaning the sentences
cleanMtDocs = cleanDocs(mtData)
cleanMtDocs[0:10]

Nueral Translation Data Set Preperation

Now that we have completed the initial preprocessing, its now time to get closer to the core process. Let us first prepare the data sets in the required format we want for modelling. The various steps which we will follow for preparation of data set are

  1. Tokenizing the text and creating vocabulary dictionaries for English and German sentences
  2. Define the sequence length for both English and German text
  3. Encode the text sequences as integer sequences
  4. Split the data set into train and test sets

Let us see each of these processes

Tokenization and vocabulary creation

Tokenization is the process of splitting the string to individual unique words or tokens. So if the string is

"Hi I am enjoying this learning and I look forward for more"

The unique tokens vocabulary would look like the following

{'i': 1, 'hi': 2, 'am': 3, , 'enjoying': 4 , 'this': 5 , 'learning': 6 'and': 7, , 'look': 8 , 'forward': 9, 'for': 10, 'more': 11}

Note that only unique words are taken and each token is given an index which will come in handy when we encode the tokens in later steps. So let us go ahead and prepare the tokens. Please note that we will be creating seperate vocabulary for English words and German words.

# Instantiating the tokenizer class
tokenizer = Tokenizer()

The function which does tokenization is the Tokenizer() class which could be imported from tensorflow.keras as shown above. The first step is to instantiate the Tokenizer() class. Next we will see how to fit text to the tokenizer object we created.

# Fit the tokenizer on the text
tokenizer.fit_on_texts(string)

Fitting the text is done using the fit_on_texts() method. This method splits the strings and then creates the vocabulary we saw earlier. Since these steps have to be repeated multiple times, let us package them as a function

# Function for creating tokenizers
def createTokenizer(lines):
    tokenizer = Tokenizer()
    tokenizer.fit_on_texts(lines)
    return tokenizer

Let us use the above function to create the tokenizer for English words and look at the total length of words in English

# Create English Tokenizer
eng_tokenizer = createTokenizer(cleanMtDocs[:,0])
eng_vocab_size = len(eng_tokenizer.word_index) + 1
print(eng_vocab_size)

We can see that the length of the English vocabulary is 6255. This is after we incremented the actual vocabulary size with 1 to account for any words which is not part of the vocabulary. Let us list down the first 10 words of the English vocabulary.

# Listing the first 10 items of the English tokenizer
list(eng_tokenizer.word_index.items())[0:10]

From the output we can see how the words are assigned an index value. Similary we will create the German vocabulary also

# Create German tokenizer
ger_tokenizer = createTokenizer(cleanMtDocs[:,1])
# Defining German Vocabulary
ger_vocab_size = len(ger_tokenizer.word_index) + 1

Now that we have tokenized the German and English sentences, the next task is to define a standard sequence length for these languges

Define Sequence lengths for German and English sentences

From our earlier introduction on sequence models, we know that we need data in sequences. A prerequisite in building sequence models is the sequences to be of standard lenght. However if we look at our corpus of both English and German sentences the lengths of each sentence will vary. We need to adopt a strategy for standardizing this length. One common strategy would be to adopt the maximum length of all the sentences as the standard sequence. Sentences which will have length lesser than the maximum length will have its indexes filled with zeros.However one pitfall of this strategy is, processing will be expensive. Let us say the length of the biggest sentence is 50 and most of the other sentences are of length ranging from 8 to 12. We have a situation wherein for just one sentence we unnecessarily increase the length of all other sentences by filling dummy values. When data sets become large, having all sentences standardized to the longest sentence will make the computation expensive.

To get over such issues we will adopt a strategy of finding a length under which majority of the sentences fall. This can be done by taking a high quantile value under which majority of the sentence lengths fall.

Let us implement this strategy. To start off we will have to count the lengths of all the sentences in the corpus

# Create an empty list to store all english sentence lenghts
len_english = []
# Getting the length of all the English sentences
[len_english.append(len(line.split())) for line in cleanMtDocs[:,0]]
len_english[0:10]

In line 2 we first created an empty list 'len_english'. Next we iterated through all the sentences in the corpus and found the length of each of the sentences and then appended each sentence lengths to the list we created, line 4.

Similarly we will create the list of all German sentence lenghts.

len_German = []
# Getting the length of all the English sentences
[len_German.append(len(line.split())) for line in cleanMtDocs[:,1]]
len_German[0:10]

After getting a distribution of all the lengths of English sentences, let us find the quantile value at 97.5% under which majority of the sentences fall.

# Find the quantile length
engLength = np.quantile(len_english, .975)
engLength

From the quantile value we can see that a sequence length of 5.0 would be a good value to adopt as majority of the sentences would fall within this length. Similarly let us calculate for the German sentences also.

# Find the quantile length
gerLength = np.quantile(len_German, .975)
gerLength

We will be using the sequence lengths we have calculated in the next process where we encode the word tokens as sequences of integers.

Encode the sequences as integers

Earlier we tokenized all the unique words and created vocabulary dictionaries. In those dictionaries we have a mapping of the word and an integer value for the word. For example let us display the first 5 tokens of the english vocabulary

# First 5 tokens and its integers of English tokenizer
list(eng_tokenizer.word_index.items())[0:5]

We can see that each tokens are associated with an integer value . In our sequence model we will be using the integer values instead of the tokens themselves. This process of converting the tokens to its corresponding integer values is called the encoding. We have a method called ‘texts_to_sequences’ in the tokenizer() to convert the tokens to integer sequences.

The standard length of the sequence which we calculated in the previous section will be the length of each of these integer encoding. However what happens if a sentence string has length more than the the standard length ? Well in that case the sentence string will be curtailed to the standard length. In the case of a sentence having length less than the standard length, the additional lengths will be filled with zeros. This process is called padding.

The above two processes will be implemented in a function for convenience. Let us look at the code implementation.

# Function for encoding and padding sequences

def encode_sequences(tokenizer,length, lines):
    # Sequences as integers
    X = tokenizer.texts_to_sequences(lines)
    # Padding the sentences with 0
    X = pad_sequences(X,maxlen=length,padding='post')
    return X

The above function takes three variables

tokenizer : Which is the language tokenizer we created earlier

length : The standard length

lines : Which is our data

In line 5 each line is converted to sequenc of integers using the 'texts_to_sequences' method and then padded using pad_sequences method, line 7. The parameter value of padding = 'post' means that the zeros are added after the corresponding length of the sentence till the standard length is reached.

Let us now use this function to prepare the integer sequence data for both English and German sentences. We will split the data set into train and test sets first and then encode the sequences. Please remember that German sequences are our X variable and English sentences are our Y variable as we are translating from German to English.

# Preparing the train and test splits
from sklearn.model_selection import train_test_split
# split data into train and test set
train, test = train_test_split(cleanMtDocs, test_size=0.1, random_state = 123)
print(train.shape)
print(test.shape)
# Creating the X variable for both train and test sets
trainX = encode_sequences(ger_tokenizer,int(gerLength),train[:,1])
testX = encode_sequences(ger_tokenizer,int(gerLength),test[:,1])
print(trainX.shape)
print(testX.shape)

Let us display first few rows of the training set

# Displaying first 5 rows of the traininig set
trainX[0:5]

From the visualization of the training set we can see the integer encoding of the sequences and also padding of the sequences . Similarly let us repeat the process for English sentences also.

# Creating the Y variable both train and test
trainY = encode_sequences(eng_tokenizer,int(engLength),train[:,0])
testY = encode_sequences(eng_tokenizer,int(engLength),test[:,0])
print(trainY.shape)
print(testY.shape)

We have come to the end of the preprocessing steps. Let us now get to the heart of the process which is defining the model and then training the model with the preprocessed training data.

Nueral Translation Model Building

In this section we will look into the building blocks of the model. We will define the model structure in a function as shown below. Let us dive into details of the model

def defineModel(src_vocab,tar_vocab,src_timesteps,tar_timesteps,n_units):
    model = Sequential()
    model.add(Embedding(src_vocab,n_units,input_length=src_timesteps,mask_zero=True))
    model.add(LSTM(n_units))
    model.add(RepeatVector(tar_timesteps))
    model.add(LSTM(n_units,return_sequences=True))
    model.add(TimeDistributed(Dense(tar_vocab,activation='softmax')))
    # Compiling the model
    model.compile(optimizer = 'adam',loss='sparse_categorical_crossentropy')
    # Summarising the model
    model.summary()
    
    return model

In the second article of this series we were introduced to the encoder-decoder architecture. We will be manifesting the encoder architecture within this code block. From the above code uptill line 5 is the encoder part and the remaining is the decoder part.

Let us now walk through each layer in this architecture.

Line 2 : Sequential Class

As you know neural networks, work on the basis of various layers stacked one after the other. In Keras, representation of the model as a stack of layers is initialized using a class called Sequential(). The sequential class is usable for most of the cases except in cases where one has to share multiple layers or have multiple inputs and outputs. For the latter case the functional API in keras is used. Since the model we have defined is quite straight forward, using sequential class will suffice.

Line 3 : Embedding Layer

A basic requirement for a neural network model is the input to be in numerical format. In our case our inputs are text format. So we have to convert this text into some numerical features. Word embedding is a very effective way of representing the sequence of texts in the form of numbers ensuring that the syntactic relationship between words in the sequence is also maintained.

Embedding layer in Keras can be explained in simple terms as a look up dictionary between the unique words in the vocabulary and the corresponding vector of that word. The vector for each word which is the representation of the semantic similarity is learned during the training process. The Embedding function within Keras requires the following parameters vocab_size, embedding_size and sequence_length

Vocab_size : The vocab size is required to initialize the matrix of unique words and its corresponding vectors. The unique indexes of each word is initialized based on the vocab size. Let us look at an example to illustrate this.

Suppose there are two sentences with the following words

Embedding gets the semantic relationship between words

‘Semantic relationships manifests the context

For demonstration purpose let us assume that the initial vector representation of these words are as shown in the table below.

IndexWordVector
0Embedding[0.02 , 0.01 , 0.12]
1gets[0.21 , 0.41 , 0.52]
2the[0.22 , 0.61 , 0.02]
3semantic[0.71 , 0.01 , 0.32]
4Relationship[0.85 ,-0.23 , -0.52]
5between[0.21 , -0.45 , 0.62]
6words[-0.29 , 0.91 , 0.052]
7manifests[0.121 , 0.401 , 0.352]
8context[0.721 , 0.531 , -0.592]

Let us understand each of the parameters of the embedding layer based on the above table. In our model the vocab size for the encoder part is the German vocabulary size. This is represented as src_vocab, which stands for source vocabulary. For the toy example we considered, our vocab size is 9 as there are 9 unique words in the above table.

embedding size : The second parameter which needs to be supplied is the embedding size. This represents the size of the vector for each word in the matrix. In the example matrix shown above the vector size is 3. The size of the embedding vector is a parameter which can be altered to get the right semantic relationship between the sequences of words in the sentence

sequence length : The sequence length represents the number of words which are required in each input sentence. As seen earlier during preprocessing, a pre-requisite for the LSTM layer was for the length of sequences to be standardized. If a particular sequence has less number of words than the sequence length, it was padded with dummy vectors so that the length was standard. For illustration purpose let us assume that the sequence length = 10. The representation of these two sentence sequences in the vector form will be as follows

[Embedding, gets, the ,semantic, relationship, between, words] => [[0.02 , 0.01 , 0.12], [0.21 , 0.41 , 0.52], [0.22 , 0.61 , 0.02], [0.71 , 0.01 , 0.32], [0.85 ,-0.23 , -0.52], [0.21 , -0.45 , 0.62], [-0.29 , 0.91 , 0.052], [0.00 , 0.00, 0.00], [0.00 , 0.00, 0.00]]

[Semantic, relationships, manifests ,the, context] => [[0.71 , 0.01 , 0.32], [0.85 ,-0.23 , -0.52], [0.121 , 0.401 , 0.352] ,[0.22 , 0.61 , 0.02], [0.721 , 0.531 , -0.592], [0.00 , 0.00, 0.00], [0.00 , 0.00, 0.00], [0.00 , 0.00, 0.00], [0.00 , 0.00, 0.00], [0.00 , 0.00, 0.00]]

The last parameter mask_zero = True is to inform the Model that some part of the data is padding data.

The final output from the embedding layer after providing all the above inputs will be a three dimensional matrix of the following shape (No. of samples ,sequence length , embedding size). Let us view this pictorially

As seen from the above figure, let each rectangular block represent the vector representation of a word in the sequence. The depth of the block will be the embedding size dimensions. Multiple words along the ‘X’ axis will form a sequence and multiple such sequences along the ‘Y’ axis will represent the number of examples we have in the corpora.

Line 4 : Sequence to sequence Layer (LSTM)

The next layer in the model is the sequence to sequence layer which in our case is a LSTM. We discussed in detail the dynamics of the LSTM layer in the third and fourth articles of the series. The number of hidden units is defined as a parameter when defining the LSTM unit.

Line 5 : Repeat Vector

In our machine translation application, we need to produce output which is equal in length with the standard sequence length of the target language ( English) . However our input at the encoder phase is equal in length to the source sequence ( German ). We therefore need a mechanism to map the output from the encoder phase to the number of sequences of the decoder phase. A ‘Repeat Vector’ is that operation which maps the input sequences (German sequence) to that of the output sequences ( English sequence). The below figure gives a pictorial representation of the operation.

As seen in the figure above we have to match the output from the encoder and the decoder. The sequence length of the encoder will be equal to the source sequence length ( German) and the length of the decoder will have to be the length of the target sequence ( English). Repeat vector can be described as a trick to match them. The output vector of the encoder where the information of the complete sequence is encoded is repeated in this operation. It is important to note that there are no weights and parameters in this operation.

Line 6 : LSTM Layer ( with return sequence is true)

The next layer is another LSTM unit. The dynamics within this unit is the same as the previous LSTM unit. The only difference in the output. In the previous LSTM unit we never had any output from each of the sequences. The output sequences is controlled by the parameter return_sequences. By default it is ‘False’. However in this case we have specified the return_sequences = True . This means that we need to have an output from each of the sequences. When we keep the return_sequences = False only the last sequence will have an output.

Line 7 : Time Distributed – Dense Layer with Softmax activation

This is the final layer of the network. This layer receives the output from the pervious LSTM layer which has outputs equal to the target sequence. Each of these sequences are then connected to a dense layer or a fully connected layer. Dense layer in Keras is synonymous to the dot product of the output and weight matrix along with addition of the bias term.

Dense = dot(Wy , Y) + by

Wy = Weight matrix of the Dense layer

Y = Output from each of the LSTM sequence

by = bias term for each sequence

After the dense operation, the resultant vector is taken through a softmax layer which converts the output to a probability distribution around the vocabulary of the target language. Another term to note is the command Time distributed. This implies that each sequence output which we get out of the LSTM layer has to be applied to a separate dense operation and a subsequent Softmax layer. So at the end of all the operation we will get a probability distribution around the target vocabulary from each of the output

Time Distributed Dense Layer

Line 9 Optimizer

In this layer the optimizer function and the loss functions are defined. The loss function we have defined is sparse_cross entropy, which is beneficial from a training perspective. If we use categorical_cross entropy we would require one hot encoding of the output matrix which can be very expensive to train given the huge size of the target vocabulary. Sparse_cross entropy gives us a great alternate.

Line 11 Summary

The last line is the summary of the model. Let us try to unravel each of the parameters of the summary level based on our understanding of the LSTM

The summary displays the model layer by layer the way we built it. The first layer is the embedding layer where the output shape is (None,6,256). None stands for the number of examples we have. The other two are the length of the source sequence ( src_timesteps = gerLength) and the embedding size ( 256 ).

Next we applied a LSTM layer with 256 hidden units which is represented as (None , 256 ). Please note that we will only have one output from this LSTM layer as we have not specified return_sequences = True.

After the single LSTM layer we have the repeat vector operations which copies the single output of the LSTM to a length equal to the target language length (engLength = 5).

We have another LSTM layer after the repeat vector operation. However in this LSTM layer we have defined the output as return_sequences=True . Therefore we have outputs of 256 units each for each of the sequence resulting in the output dimension of ( None, 5 , 256).

Finally we have the time distributed dense layer. We earlier saw that the time distributed dense layer will be a dense operation on each of the time sequence. Each sequence will be of the form Dense = dot(Wy , Y) + by. The weight matrix Wy will have a dimension of (256,6225 ) where 6225 is the dimension of the target vocabulary ( eng_vocab_size = 6225). Y is the output from each of the LSTM layer from the previous layer which has a dimension ( 1, 256 ). So the dot product of both these matrices will be

[ 1, 256 ] x [256,6225] = >> [1, 6225]

The above is for one time step. When there are 5 time steps for the target language we will get a dimension of ( None , 5 , 6225)

Model fitting

Having defined the model and the optimization function its time to fit the model on the data.

# Fitting the model
checkpoint = ModelCheckpoint('model1.h5',monitor='val_loss',verbose=1,save_best_only=True,mode='min')
model.fit(trainX,trainY,epochs=50,batch_size=64,validation_data=(testX,testY),callbacks=[checkpoint],verbose=2)

The initiation of both the forward and backward propagation is through the model.fit function. In this function we provide the inputs (trainX and trainY), the number of epochs , the batch size for each pass of the optimizing function and also the validation set. We also define the checkpointing to save our models based on the validation score. The model fitting process or training process is a time consuming step. During the train phase the forward pass, error identification and the back propogation processes will kick in.

With this we come to the end of the training process. Let us look back and summarize the model architecture to get a big picture of the process.

Model Big picture

Having seen the model components, let us now get a big picture as to the whole process and how the forward and back propagation work together to learn the required parameters from the data.

The start of the process is the creation of the features for the model namely the embedding layer. The inputs for the input layer are the source vocabulary size, embedding size and the length of the sequences. The output we get out of this is a three dimensional matrix with number of examples, sequence length and the embedding size as the three dimensions.

The embedding layer is then supplied to the first LSTM layer as input with each time step receiving an embedding layer . There will not be any output for each time step of the sequence. The only output will be from the last time step which is then given as input to the next LSTM layer. The number of time steps of the second LSTM unit will be the equal to length of the target language sequence. To ensure that the LSTM has inputs equal to the target sequences, the repeat vector function is used to copy the output from the previous LSTM layer to all the time steps of the second LSTM layer.

The second LSTM layer will given intermediate outputs for each of the time steps. Each of these outputs are then fed into a dense layer. The output of the dense layer will be a vector equal to the vocabulary length of the target language. This vector is then passed on to the softmax layer to convert it into a probability distribution around the target vocabulary. The output from the softmax layer, which is the prediction is compared with the actual label and the difference would be the error.

Once the error is generated, it has to be back propagated to all the parts of the network to get the gradients of each of the parameters. The error will start propagating first from the dense layer and then would propagate to each of the sequence of the second LSTM unit. Within the LSTM unit the error will start propogating from the last sequence and then will progressively move towards the first sequence. During the movement of the error from the last sequence to the first, the respective errors from each of the sequences are added to the propagated error so as to get the gradients. The final weight gradient would be sum of the gradients obtained from each of the sequence of the LSTM as seen from the numerical example on back propagation. The gradient with respect to each of the inputs will also be calculated by summing across all the time step. The sum total of the gradients of the inputs from the second LSTM layer will be propagated back to the first LSTM layer.

In the first LSTM layer, the gradient received from the top layer will be propagated from the last time sequence. The error propagates progressively through each time step. In this LSTM there will not be any error to be added at each sequence as there were no output for each of the sequence except for the last layer. Along with all the weight gradients , the gradient vector for the embedding vector is also calculated. All these operations are carried out for all the epochs and finally the model weights are learned, which help in the final prediction.

Once the training is over, we get the most optimised parameters inside the model object. This model object is then used to predict on the test data set. Let us now look at the prediction or inference phase of the process.

Inference Process

The proof of the pudding of the model we created is the predictions we get from a test set. Let us first look at how the predictions would be from the model which we just created

# Generating the predictions
prediction = model.predict(testX,verbose=0)
prediction.shape

We get the prediction from the model using model.predict() method with the test data as its input. The prediction we get would be of shape ( num_examples, target_sequence_length,target_vocabulary_size). Each example will be a sequence of probability distribution around the target vocabulary. For each sequence the predicted word would be the index of the vocabulary where the probability is the greatest. Let us demonstrate this with a figure.

Let us assume that the vocabulary has only three words [ I , Learning , Am] with indexes as [1,2,3] respectively. On predicting with the model we will get a probability distribution on each sequence as shown in the figure above. For the first sequence the probability for the first index word is 0.6 and the other two are 0.2 and 0.2 resepectively. So from the probability distribution the word in the first index has the largest probability and that will be the predicted word for that sequence. So based on the index with the maximum probability for the entire sequence we get the predictions as [1,3,2] which translates to [I , Am, Learning] as per the vocabulary.

To get the index of each of the sequences, we use a function called argmax(). This is how the code to get the indexes of the predictions will look

# Getting the prediction index along the last axis ( Vocabulary size axis)
predIndex = [argmax(vector,axis = -1) for vector in prediction]
predIndex[0:3]

In the above code axis = -1 means that the argmax has to be taken on the last dimension of the prediction which is along the vocabulary dimension. The prediction we get will be in the form of sequences of integers having the same sequence length as the target vocabulary.

If we look at the first 3 predictions we can see that the predictions are integers which have to be converted to the corresponding words. This can be done using the tokenizer dictionary we created earlier. Let us look at how this is done

# Creating the reverse dictionary
reverse_eng = eng_tokenizer.index_word

The index_word, method of the tokenizer class generates the word for an input index. In the above step we have created a dictionary called reverse_eng which outputs a word when given an index. For a sequence of predictions we have to loop through all the indexes of the predictions and then generate the predicted words as shown below.

# Converting the tokens to a sentence
preds = []
for pred in predIndex[0]:
  if pred == 0:
        continue 
  preds.append(reverse_eng[pred])  
print(' '.join(preds))

In the above code block in line 2 we first initialized an empty list preds . We then iterated through each of the indexes in lines 3-6 and generated the corresponding word for the index using the reverse_eng dictionary. The generated words are finally appended to the preds list. We joined all the words in the list together get our predicted sentence.

Let us now package all the inference code we have seen so far into two functions.

# Creating a function for converting sequences
def Convertsequence(tokenizer,source):
    target = list()
    reverse_eng = tokenizer.index_word
    for i in source:
        if i == 0:
            continue
        target.append(reverse_eng[int(i)])
    return ' '.join(target)

The first function is to convert the sequence of predictions to a sentence.

# Function to generate predictions from source data
def generatePredictions(model,tokenizer,data):
    prediction = model.predict(data,verbose=0)
    AllPreds = []
    for i in range(len(prediction)):
        predIndex = [argmax(prediction[i, :, :], axis=-1)][0]
        target = Convertsequence(tokenizer,predIndex)
        AllPreds.append(target)
    return AllPreds

The second function is to generate predictions from the test set and then generate the predicted sentence. The first function we defined is used inside the generatePredictions function.

Now that we have understood how the predictions can be generated let us go ahead and generate predictions for the first 20 examples of the test set and evaluate the results.

# Generate predictions
predSent = generatePredictions(model,eng_tokenizer,testX[0:20,:])
for i in range(len(testY[0:20])):
    targetY = Convertsequence(eng_tokenizer,testY[i:i+1][0])
    print("Original sentence : {} :: Prediction : {}".format([targetY],[predSent[i]]))

From the output we can see that the predictions are pretty close in a lot of the examples. We can also see that there are some instances where the context is understood and predicted with different words like the examples below

There are also predictions which are way off the target

However considering the fact that the model we used was simple and the data set we used were relatively small, the model does a reasonably okay job.

Inference on your own sentences

Till now we predicted on the test set. Let us see how we can generate predictions from an input sentence we provide.

To generate predictions from our own input sentences, we have to first clean the input sentences and then tokenize them to transform it to the format the model understands. Let us look at the functions which does these tasks.

def cleanInput(lines):
    cleanSent = []
    cleanDocs = list()
    for docs in lines.split():
        line = normalize('NFD', docs).encode('ascii', 'ignore')
        line = line.decode('UTF-8')
        line = [line.translate(str.maketrans('', '', string.punctuation))]
        line = line[0].lower()
        cleanDocs.append(line)
    cleanSent.append(' '.join(cleanDocs))
    return array(cleanSent)

The first function is the cleaning function. This is an abridged version of the cleaning function we used for our original data set. The second function we will use is the encode_sequences function we used earlier. Using these functions let us go ahead and generate our predictions.

# Trying different input sentences
inputSentence = 'Es ist ein großartiger Tag' # It is a great day ?

The first sentence we will try is the German equivalent of 'It is a great day ?'.

Let us clean the input text first using the function we developed

# Clean the input sentence
cleanText = cleanInput(inputSentence)

Next we will encode this sentence into sequence of integers

# Encode the inputsentence as sequence of integers
seq1 = encode_sequences(ger_tokenizer,int(gerLength),cleanText)

Let us get our predictions and print them out

# Generate the prediction
predSent = generatePredictions(model,eng_tokenizer,seq1)

print("Original sentence : {} :: Prediction : {}".format([cleanText[0]],predSent))

Its not a great prediction isnt it ?? Let us try couple more sentences

inputSentence1 ='Heute wird es regnen' #  it's going to rain Today
inputSentence2 ='Ich habe im Radio gesprochen' # I spoke on the radio

for sentence in [inputSentence1,inputSentence2]:
  cleanText = cleanInput(sentence)
  seq1 = encode_sequences(ger_tokenizer,int(gerLength),cleanText)
  # Generate the prediction
  predSent = generatePredictions(model,eng_tokenizer,seq1)

  print("Original sentence : {} :: Prediction : {}".format([cleanText[0]],predSent))

We can see that the predictions on our own sentences are not promising .

Why is it that the test set gave us reasonable predictions and our own sentences are not giving good predicitons ? Well one obvious reason is that the distribution of words we used could be different from the distribution which was used for training. Besides,the model we used was a simple one and the data set also relatively small. All these could be the reasons for bad predictions on our own sentences. So how do we improve the quality of predictions ? There are different ways to do that. Let us see some of them.

  1. Use bigger data set for training and train for longer epochs.
  2. Change the model architecture. Experiment with different number of units and number of layers. Try variations like bidirectional LSTM
  3. Try out different regularization methods like drop out.
  4. Use attention mechanisms

There are different avenues for improvement. I would urge you to try out different choices and let me know how your fared.

Next Steps

Congratulations, we have successfully built a prototype for machine translation system. The next step in our journey is to convert this prototype into an application. We will address that in the next post.

Go to article 6 of this series : From prototype to production

You can download the notebook for the prototype using the following link

https://github.com/BayesianQuest/MachineTranslation/tree/master/Prototype

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, I would recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!

IV : Build and Deploy Data Science Products : Looking under the hood of Machine translation model – LSTM Backpropagation

Source: drivezone.com

“True knowledge come with deep understanding of a topic and its inner working”

Albert Einsteen

This is the fourth part of the series where we continue on our quest to understand the innerworking of a LSTM model. Deep understanding of the model is a step towards acquiring comprehensive knowledge on our machine translation application. This series comprises of 8 posts.

  1. Understand the landscape of solutions available for machine translation
  2. Explore sequence to sequence model architecture for machine translation.
  3. Deep dive into the LSTM model with worked out numerical example.
  4. Understand the back propagation algorithm for a LSTM model worked out with a numerical example.( This post)
  5. Build a prototype of the machine translation model using a Google colab / Jupyter notebook.
  6. Build the production grade code for the training module using Python scripts.
  7. Building the Machine Translation application -From Prototype to Production : Inference process
  8. Build the machine translation application using Flask and understand the process to deploy the application on Heroku

In the previous 3 posts we understood the solution landscape for machine translation ,explored different architecture choices for sequence to sequence models and did a deep dive into the forward propagation algorithm. Having understood the forward propagation its now time to explore the back propagation of the LSTM model

Back Propagation Through Time

We already know that Recurrent networks have a time component and we saw the calculations of different components during the forward propogation phase. We saw in the previous post that we traversed one time step at a time to get the expected outputs.

The backpropagation operation works in the reverse order and traverses one time step at a time in the reverse order to get the gradients of all he parameters. This process is called back propagation through time.

The initiation step of the back propagation is the error term .As you know the dynamics of optimization entails calculating the error between the predicted output and ground truth, propagating the gradient of the error to the layers thereby updating the parameters of the model. The work horse of back propagation is partial differentiation,using the chain rule. Let us see that in action.

Backpropagation calculation @ time step 2

We start with the output from our last layer which as calculated in the forward propagation stage is ( refer the figure above)

a t = -0.141

The label for this time step is

Yt = 0.3

In this toy example we will take a simple loss function , a squared loss. The error would be derived as the average of squared difference between the last time step and the ground truth (label).

Error = ( at – yt )2/2

Before we start the back propagation it would be a good idea to write down all the equations in the order in which we will be taking the derivative.

  1. Error = ( at – yt )2/2
  2. at = tanh( Ct ) * Ґo
  3. Ct = Ґu * C~ + Ґf * Ct-1
  4. Ґo = sigmoid(Wo *[xt , at-1] + bo)
  5. C~ = tanh(Wc *[xt , at-1] + bc)
  6. Ґu = sigmoid(Wu *[xt , at-1] + bu)
  7. Ґf = sigmoid(Wf *[xt , at-1] + bf)

We mentioned earlier that the dynamics of backpropogation is the propogation of the gradients . But why is getting the gradients important and what information does it carry ? Let us answer these questions.

A gradient represents unit rate of change i.e the rate at which parameters have to change to get a desired reduction in error. The error which we get is dependent on how close to reality our initial assumptions of weights were. If our initial assumption of weights were far off from reality, the error also would be large and viceversa. Now our aim is to adjust our initial weights so that the error is reduced. This adjustment is done through the back propagation algorithm. To make the adjustment we need to know the quantum of adjustment and also the direction( i.e whether we have to add or subtract the adjustments from initially assumed weights). To derive the quantum and direction we use partial differentiation. You would have learned in school that partial differentiation gives you the rate of change of a variable with respect to another. In this case we need to know the rate at which the error would change when we make adjustments to our assumed parameters like weights and bias terms.

Our goal is to get the rate of change of error with respect to the weights and the biases. However if you look at our first equation

Error = ( at – yt )2/2

we can see that it dosent have any weights in it. We only have the variable at . But we know from our forward propagation equations that at is derived by different operations involving weights and biases. Let us traverse downwards from the error term and trace out different trails to the weights and biases.

The above figure represents different trails ( purple,green,red and blue ) to reach the weights and biases from the error term. Let us first traverse the purple coloured trail.

The purple coloured trail is to calculate the gradients associated with the output gate. When we say gradients it entails finding the rate of change of the error term with respect to the weights and biases associated with the output gate, which in mathematical form is represented as ∂E/∂Wo. If we look down the purple trail we can see that Wo appears in the equation at the tail end of the trail. This is where we apply the chain rule of differentiation. Chain rule of differentiation helps us to differentiate the error with respect to the connecting links till we get to the terms which we want, like weights and biases. This operation can be represented using the following equation.

This image has an empty alt attribute; its file name is image.png

The green coloured trail is a longer one. Please note that the initial part of the green coloured trail, where the differentiation with respect to error term is involved ( ∂E/∂a ), is the same as the purple trail. From the second box onwards a distinct green trail takes shape and continues till the box with the update weight (Wu). The equation for this can be represented as follows

∂E/∂Wu = ∂E/∂a * ∂a/∂Ct * ∂Ct/ ∂Γu * ∂Γu/∂Wu

The other trails are similar. We will traverse through each of these trails using the numerical values we got after the forward propagation stage in the last post.

Gradients of Equation 1 : Error = ( at – yt )2/2

The first step in backpropagation is to take the derivative of the error with respect to at

dat = ∂E/∂at = ∂/∂at[ (at -y)2/2]
= 2 * (at-y)/ 2
= at-y

Let us substitute the values

Derivative 2.1.1.Numerical EqnValue
dat = at– y= -0.141 – 0.3-0.441

If you are thinking that thats all for this term then you are in for a surprise. In the case of a sequence model like LSTM there would be an error term associated with each time step and also an error term which back propagates from the previous time step. The error term for certain time step would be the sum total of both these errors. Let me explain this pictorially.

This image has an empty alt attribute; its file name is timestep_errorearlierstep.jpeg

Let us assume that we are taking the derivative of the error with respect to the output from the first time step (∂E/∂at-1), which is represented in the above figure as the time step on the left. Now if you notice the same output term at-1 is also propogated to the second time step during the forward propagation stage. So when we take the derivative there is a gradient of this output term which is with respect to the error from the second time step. This gets propogated through all the equations within the second time step using the chain rule as represented by the purple arrow. This gradient has to be added to the gradient derived from the first time step to get the final gradient for that output term.

However in the case of the top example since we are taking the gradient of the second time step and there are no further time step, this term which gets propogated from the previous time step would be 0. So ideally the equation for the derivative for the second output should be written as follows

Derivative – 1.1Numerical EqnValue
da = at – y + 0= -0.141 – 0.3 + 0-0.441

In this equation ‘0’ corresponds to the gradient from the third time step, which in this case dosent exist.

Gradients of Equation 2 : [at = tanh( Ct ) * Ґo ]

Having found the gradient for the first equation which had the error term, the next step is to find the gradient of the output term at and its component terms Ct and Ґo.

Let us first differentiate it with respect to Ct. The equations for this step are as follows

∂E/∂Ct = ∂E/∂at * ∂at/∂Ct
= da * ∂at/∂Ct

In this equation we have already found the value of the first term which is ∂E/∂at in the first step. Next we have to find the partial derivative of the second term ∂at/∂Ct

∂at/∂Ct = Γo * ∂/∂Ct [ tanh(Ct)]
= Γo * [1 - tanh2(Ct)]

Please note => ∂/∂x [ tanh(x)]= 1 – tanh2(x)

So the complete derivation for ∂E/∂Ct is

∂E/∂Ct = da * Γo * [1 - tanh2(Ct)]

So the above is the derivation of the partial derivative with respect to state 2. Well not quite. There is one more term to be added to this where state 2 will appear. Let me demonstrate that. Let us assume that we had 3 time steps as shown in the table below

We can see that the term Ctappears in the 3rd time step as circled in the table. When we take the derivative of error of time step 2 with respect to Ct we will have to take the derivative from the third time step also. However in our case since the third step doesn’t exist that term will be ‘0’ as of now. However when we take the derivative of the first time step we will have to consider the corresponding term from the second time step. We will come to that when we take the derivative of the first time step. For the time being it is ‘0’ for us now as there is no third time step.

Derivative – 2.2.1Numerical EqnValue
dCt =
da * Ґo * (1 – tanh2(Ct ) + 0
= -0.441 * 0.24* (1-tanh2(-0.674 ) =
-0.441 * 0.24* ( 1 – (-0.59 * -0.59))
-0.069

Let us now take the gradient with the second term of equation 2 which is Ґo. The complete equation for this term is as follows

∂E/Γo = ∂E/∂at * ∂at/∂Γo
= da * ∂at/∂Γo

The above equation is very similar to the earlier derivation. However there are some nuances with the derivation of the term with Γo . If you remember this term is a sigmoid gate with the following equation.

Γo = sigmoid(Wo *[xt , at-1] + bo)
= sigmoid(u)
Where u = Wo *[xt , at-1] + bo

When we take the derivative of the output term with respect to Γo (∂at/∂Γo ), this should be with respect to the terms inside the sigmoid function ( u). So ∂at/∂Γo would actually mean ∂at/∂u . So the entire equation can be rewritten as

at = tanh(Ct) * sigmoid(u) where Γo = sigmoid(u).

Therefore ∂at/∂Γo = tanh(Ct) * Γo *( 1 - Γo )

Please note if y = sigmoid(x) , ∂y/∂x = y(1-y)

The complete equation for the term ∂E/Γo =

da * tanh(Ct) * Γo *( 1 - Γo )

Substituting the numerical terms we get

Derivative – 2.2.2Numerical EqnValue
d Ґ0 = da *tanh(Ct)* Ґo *(1 – Ґo)= -0.441 * tanh(-0.674) * 0.24 *(1-0.24)0.047

Gradients of Equation 3 : [ Ct = Ґu * C~ + Ґf * Ct-1 ]

Let us now find the gradients with respect to the third equation

This equation has 4 terms, Ґu, C~ , Ґf and Ct-1 , for which we have to calculate the gradients. Let us start from the first term Ґu whose equation is the following

∂E/Γu = ∂E/∂at * ∂at/∂Ct * ∂Ct/ ∂Γu

However the first two terms of the above equation, ∂E/∂at * ∂at/∂Ct were already calculated in derivation 2.1, which can be represented as dCt . The above equation can be re-written as

∂E/Γu = dCt * ∂Ct/ ∂Γu

From the new equation we are left with the second part of the equation which is ∂Ct / ∂Γu ,which is the derivative of equation 3 with respect to Γu.

Ct = Ґu * C~ + Ґf * Ct-1.......... (3)

∂Ctu = C~ * ∂/ ∂Γu [ Ґu ] + 0.........(3.1)

In equation 3 we can see that there are two components, one with the term Ґu in it and the other with Ґf in it. The partial derivative of the first term which is partial derivative with respect to Ґu is what is represented in the first half of equation 3.1. The partial derivative of second half which is the part with the gate Ґf will be 0 as there is no Ґu in it. Equation 3.1 represents the final form of the partial derivative.

Now similar to derivative 2.2 which we developed earlier, the partial derivative of the sigmoid gate ∂/ ∂Γu [ Ґu ] will be Γu * ( 1 - Γu ). The final form of equation 3.1 would be

∂Ctu = C~ * Γu * ( 1 - Γu )

The solution for the gradient with respect to the update gate would be

∂E/Γu = dCt* C~ * Γu * ( 1 - Γu )

Derivative 2.3.1Numerical EqnValue
d Ґu = dCt *C~* Ґu *(1 – Ґu)= -0.069 * -0.63 * 0.755 *(1-0.755)0.0080

Next let us calculate the gradient with respect to the internal state C~ . The complete equation for this is as follows

∂E/C~ = ∂E/∂at * ∂at/∂Ct * ∂Ct/ ∂C~

= dCt * ∂Ct/ ∂C~

= dCt * ∂/ ∂C~ [ Ґu * C~]

= dCt * Ґu * ∂/ ∂C~ [ C~]

However we know that, C~ = tanh(Wc *[x , a] + bc) . Let us represent the terms within the tanh function as u .

C~ = tanh(u), where u = Wc *[x , a] + bc

Similar to the derivations we have done for the sigmoid gates, we take the derivatives with respect to the terms within the tanh() function which is ‘u’ . Therefore

∂/ ∂C~ [ C~] = 1-tanh2 (u)

= 1 - tanh2 (Wc *[x , a] + bc)

= 1 - (C~ )2

since, C~ = tanh(Wc *[x , a] + bc) and therefore

(C~ )2 = tanh2 (Wc *[x , a] + bc)

The final equation for this term would be

∂E/C~ = dCt * Ґu * 1 - (C~ )2

Derivative 2.3.2Numerical EqnValue
dC~ = dCt* Ґu * (1 – (C~)2)= -0.069 * 0.755 * (1-(-0.63)2)-0.0314

The gradient with respect to the third term Ґf would be very similar to the derivation of the first term Ґu

∂E/Γf = ∂E/∂at * ∂at/∂Ct* ∂Ct/ ∂Γf

= dCt* Ct-1 * Γf * ( 1 - Γf )

Derivative 2.3.3Numerical EqnValue
d Ґf = dCt* Ct-1* Ґf *(1 – Ґf)= -0.069 * -0.33 * 0.60 *(1-0.60)0.0055

Finally we come to the gradient with respect to the fourth term Ct-1 ,the equation for which is as follows

∂E/Ct-1 = ∂E/∂at * ∂at/∂Ct* ∂Ct/ ∂Ct-1

= dCt* Γf

Derivative 2.3.4Numerical EqnValue
dCt-1 = dCtf= -0.069 * 0.60-0.0414

In this step we have got the gradient of cell state 1 which will come in handy when we find the gradients of time step 1.

Gradients of previous time step output (at-1)

In the previous step we calculated the gradients with respect to equation 3. Now it is time to find the gradients with respect to the output from time step 1 , at-1.

However one fact which we have to be cognizant is that at-1 is present in 4 different equations, 4,5,6 & 7. So we have to take derivative with respect to all these equations and then sum it up. The gradient of at-1 within equation 4 is represented as below

∂E/∂at-1 = ∂E/∂at * ∂at/∂Ct * ∂Ct/ ∂Γo * ∂Γo/∂at-1

However we have already found the gradient of the first three terms of the above equation, which is with respect to the terms within the sigmoid function i.e ‘u’ as dΓo in derivative 2.1. Therefore the above equation can be simplified as

∂E/∂at-1 = dΓo * ∂Γo/∂at-1

The term ∂Γo/∂at-1 in reality is ∂u/∂at-1 where u = Wo *[x , at-1] + bo, because when we took the derivative of Γo we took it with respect to all the terms within the sigmoid() function,which we called as ‘u’.

From the above equation the derivative will take the form

∂Γo/∂at-1 = ∂u/∂at-1 = Wo

The complete equation from the gradient is therefore

∂E/∂at-1 = dΓo * Wo

There are some nuances to be taken care in the above equation since there is a multiplication by Wo . When we looked at the equation for the forward pass we saw that to get the equation of the gates, we originally had two weights, one for the x term and the other for the ‘a’ term as below

Ґo = sigmoid(Wo*[x ] + Uo* [a] + bo)

This equation was simplified by concatenating both the weight parameters and the corresponding x & a vectors to a form given below.

Ґo = sigmoid(Wo *[x , a] + bo)

So in effect there is a part of the final weight parameter Wo which is applied to ‘x’ and another part which is applied to ‘a’. Our initial value of the weight parameter Wo was [-0.75 ,-0.95 , -0.34]. The first two values are the values corresponding to ‘x’ as it is of dimension 2 and the last value ( -0.34) is what is applicable for ‘a’. So in our final equation for the gradient of at-1, ∂E/∂at-1 = dΓo * Wo , we will multiply o only with -0.34.

Similar to the above equation we have to take the derivative of at-1for all other equations 5,6 and 7 which will take the form

Equation 5 = > ∂E/∂at-1 = dC~* Wc

Equation 6= > ∂E/∂at-1 = dΓu* Wu

Equation 7 = > ∂E/∂at-1 = dΓf* Wf

The final equation of will be the sum total of all these components

Derivative 2.4.1Numerical EqnValue
dat-1 = Wo * o + Wc * dC~ + Wu * dҐu + Wf * dҐf= [(-0.34 * 0.047) + (-0.13 * -0.0314) + (1.31 * 0.0080) + (-0.13*0.0055) ]-0.00213

Now that we have calculated the gradients of all the components for time step 2, let us proceed with the calculations for time step 1

Back Propagation @ time step 1.

All the equations and derivations for time step 1 is similar to time step 2. Let us calculate the gradients of all the equations as we did with time step 1

Gradients of Equation 1 : Error term

Gradient with respect to error term of the current time step

Derivative 1.1.1Numerical EqnValue
dat-1 = at-1 – yt-1= -0.083 – 0.8-0.883

However we know that dat-1 = Gradient with respect current layer + Gradient from next time step, as shown in the figure below

Gradient propagated from the 2nd layer is the derivative of at-1which was derived as the last step of the previous time step ( Derivative 2.4.1)

Total Gradient

Derivative 1.1.1Numerical EqnValue
dat-1 = Gradient from this layer + Gradient from previous layer= -0.883 + -0.00213-0.88513

Gradients of Equation 2

Next we have to find the gradients of equation 2 with respect to the cell state, Ct-1and Ґo.When deriving gradient of cell state state we discussed that the cell state of the current layer appears in the next layer also, which will have to be considered. So the total derivative would be

Derivative 1.2.1Formulae
dCt-1 = dCt-1 in current time step + dCt-1 from next time stepdCt-1 = da * Ґo * (1 – tanh2(Ct-1 ) + dCt-1f ( Derivative 3.4)
Derivative 1.2.1Numerical EqnValue
dCt-1 = da * Ґo * (1 – tanh2(Ct-1 ) + dCt-1in next layer= -0.88513 * 0.26 * (1-tanh2(-0.33 ) + (-0.0414)
= -0.88513* 0.26 * ( 1 – (-0.319 * -0.319)) – 0.0414
-0.25

Next is the gradient with respect to Ґo .

Derivative 1.2.2Numerical EqnValue
d Ґ0 = da *tanh(Ct-1)* Ґo *(1 – Ґo)= -0.88513 * tanh(-0.33) * 0.26 *(1-0.26)0.054

Gradients of Equation 3

  • Derivative with respect to Ґu
Derivative 1.3.1Numerical EqnValue
d Ґu = dCt-1 *C~* Ґu *(1 – Ґu)= -0.25 * -0.39 * 0.848 *(1-0.848)0.013
  • Derivative with respect to C~
Derivative 1.3.2Numerical EqnValue
dC~ = dCt-1 * Ґu * (1 – (C~)2)= -0.25 * 0.848 * (1-(-0.39)2)-0.18
  • Derivative with respect to Ґf
Derivative 1.3.3Numerical EqnValue
d Ґf = dCt-1 *C0* Ґf *(1 – Ґf)= -0.25 * 0 * 0.443 *(1-0.443)0
  • Derivative with respect to initial cell state C<0>
Derivative 1.3.4Numerical EqnValue
dC0 = dCt-1f= -0.25 * 0.443-0.11

Gradients of initial output (a0)

Similar to the previous time step this has 4 components pertaining to equations 4,5,6 & 7

Derivative 1.4.1Numerical EqnValue
da0 = Wo * o + Wc * dC~ + Wu * dҐu + Wf * dҐf= [(-0.34 * 0.054) + (-0.13 * -0.18) + (1.31 * 0.013) + (-0.13*0) ]0.022

Now that we have completed the gradients for both time steps let us tabularize the results of all the gradients we have got so far

EqnGradientsValues
2.1.1dat = at – yt + 00.441
2.2.1dCt = dat * Ґo * (1 – tanh2(Ct ) + 0-0.069
2.2.2d Ґ0 = dat * tanh(Ct )* Ґo *(1 – Ґo)0.047
2.3.1d Ґu = dCt * C~ * Ґu *(1 – Ґu)0.0080
2.3.2dC~ = dCt * Ґu * (1 – (C~)2)-0.0314
2.3.3d Ґf = dCt * Ct-1 * Ґf *(1 – Ґf)0.0055
2.3.4dCt-1 = dCt * Ґf-0.0414
2.4.1dat-1 = Wo * dҐo + Wc * dC~ + Wu * dҐu + Wf * dҐf-0.00213
1.1.1dat-1 = at-1 – yt-1 + eq (2.4.1)-0.88513
1.2.1dCt-1 = dat-1 * Ґo * (1 – tanh2(Ct-1 ) + eq 2.3.4-0.25
1.2.2d Ґ0 = dat-1 * tanh(Ct-1 )* Ґo *(1 – Ґo)0.054
1.3.1d Ґu = dCt-1* C~ * Ґu *(1 – Ґu)0.013
1.3.2dC~ = dCt-1* Ґu * (1 – (C~)2)-0.18
1.3.3d Ґf = dCt-1 * C0 * Ґf *(1 – Ґf)0
1.3.4dC0 = dCt-1 * Ґf-0.11
1.4.1da0 = Wo * dҐo + Wc * dC~ + Wu * dҐu + Wf * dҐf0.022

Gradients with respect to weights

The next important derivative which we have to derive is with respect to the weights. We have to remember that the weights of an LSTM is shared across all the time steps. So the derivative of the weight will be the sum total of the derivatives from each individual time step. Let us first define the equation for the derivative of one of the weights, Wu.

The relevant equation for this is the following

The first three terms of the gradient is equal to u which was already derived through equations 2.3.1 and 1.3.1 in the table above. Also remember u is the gradient with respect to the terms inside the sigmoid function ( i.e Wu *[xt , at-1] + bu) . Therefore the derivative of the last term, ∂Γu/∂Wu would be

∂Γu/∂Wu = [xt , at-1]

The complete equation for the gradient with respect to the weight Wu would be

∂E/∂Wu = u * [xt , at-1]

The important thing to note in the above equation is the dimensions of each of the terms. The first term, u, is a scalar of dimension (1,1) , however the second term is a vector of dimension (1 ,3) . The resultant gradient would be another vector of dimension (1,3) as the scalar value will be multiplied with all the terms of the vector. We will come to that shortly. However for now let us find the gradients of all other weights.The derivation for other weights are similar to the one we saw. The equations for the gradients with respect to all weights for time step 1 are as follows

DerivativeEquation
dWf= dҐf * [xt , at-1]
dWo= dҐo * [xt , at-1]
dWc= dC~ * [ xt , at-1]
dWu= dҐu * [xt , at-1]

The total weight derivative would be sum of weight derivatives of all the time steps.

dW = dW1 + dW2

As discussed above to find the total gradient it would be convenient and more efficient to stack all these equations in a matrix form and then multiply it with the input terms and then adding them across the different time steps. This operation can be represented as below

Let us substitue the numberical values and calculate the gradients for the weights

This image has an empty alt attribute; its file name is image-19.png

The matrix multiplication will have the following values

This image has an empty alt attribute; its file name is image-25.png

The final gradients for all the weights are the following

This image has an empty alt attribute; its file name is image-24.png

Gradients with respect to biases

The next task is to get the gradients of the bias . The derivation of the gradients for bias is similar to that of the weights. The equation for the bias terms would be as follows

Similar to what we have done for the weights, the first three terms of the gradient is equal to u . The derivative of the fourth term which are the terms inside the sigmoid function ( i.e Wu *[xt , at-1] + bu) will be

∂Γu/∂bu = 1

The complete equation for the gradient with respect to the weight Wu would be

∂E/∂bu = u * 1

The final gradient of the bias term would be the sum of the gradients of the first time step and the second. As we have seen in case of the weights, the matrix form would be as follows

This image has an empty alt attribute; its file name is image-27.png

The final gradients for the bias terms are

This image has an empty alt attribute; its file name is image-28.png

Weights and bias updates

Calculating the gradients using back propagation is not an end by itself. After the gradients are calculated, they are used to update the initial weights and biases .

The equation is as follows

Wnew = Wold - α * Gradients

Here α is a constant which is the learning rate. Let us assume it to be 0.01

The new weights would be as follows

This image has an empty alt attribute; its file name is image.png

Similarly the updated bias would be

This image has an empty alt attribute; its file name is image-3.png

As you would have learned, these updated weights and bias terms would take the place of the initial weights and biases in the next forward pass and then the back progagation again kicks in to calculate the new set of gradients which will be applied on the updated weights and gradients to get the new set of parameters. This process will continue till the pre-defined epochs.

Error terms when softmax is used

The toy example which we saw just now has a squared error term, which was used for backpropagation. The adoption of such an example was only to demonstrate the concepts with a simple numerical example. However in the problem which we are dealing with or for that matter many of the problems which we will deal with will have a softmax layer as its final layer and thereafter cross entropy as its error function. How would the backpropogation derivation differ when we have a different error term than what we have just done in the toy example ? The major change would be in terms of how the error term is generated and how the error is propogated till the output term at. After this step the flow will be the same as what we we have seen earlier.

Let us quickly see an example for a softmax layer and a cross entropy error term. To demonstrate this we will have to revisit the forward pass from the point we generate the output from each layer.

The above figure is a representation of the equations for the forward pass and backward pass of an LSTM. Let us look at each of those steps

Dense Layer

We know that the output layer at from a LSTM will be a vector with dimension equal to number of units of the LSTM. However for the application which we are trying to build the output we require is the most probable word in the target vocabulary. For example if we are translating from German to English, given a German sentence, for each time step we need to predict a corresponding English word. The prediction from the final layer would be in the form of a probability distribution over all the words in the English vocabulary we have in our corpus.

This image has an empty alt attribute; its file name is image-14.png

Let us look at the above representation to understand this better. We have an input German sentence 'Wie geht es dir' which translates to 'How are you'. For simiplicity let us assume that there are only 3 words in the target vocabulary ( English vocabulary). Now the predictions will have to be a probability distribution over the three words over the target vocabulary and the index which has the highest probability will be the prediction. In the prediction we see that the first time step has the maximum probability ( 0.6) on the second index which corresponds to the word ‘How’ in the vocabulary. The second and third time steps have maximum probability on the first and third indexes respectively giving us the predicted string as ‘How are you’. ( Please note that in the figure above the index of the probability is from bottom to top, which means the bottom most box corresponds to index 1 and top most to index 3)

Coming back to our equation, the output layer at is only a vector and not a probability distribution. To get a probability distribution we need to have a dense layer and a final softmax layer. Let us understand the dynamics of how the conversion from the output layer to the probability distribution happens.

The first stage is the dense layer where the output layer vector is converted to a vector with the same dimension as of the vocabulary. This is achieved by the multiplication of the output vector with the weights of the dense layer. The weight matrix will have the dimension [ length of vocabulary , num of units in output layer]. So if there are 3 words in the vocabulary and one unit in the output layer then weight matrix will be of dimension [ 3, 1], ie it has 3 rows and one column. Another way of seeing this dimension is each row of the weight matrix corresponds to each word in the vocabulary. The dense layer would be derived by the dot product of weight matrix with the output layer

Z = Wy * at

The dimensions of the resultant vector will be as follows

[3,1] * [1,1] => [3,1]

The resultant vector Z after the dense layer operation will have 3 rows and 1 column as shown below.

This image has an empty alt attribute; its file name is image-19.png

This vector is still not a probability distribution. To convert it to a probability distribution we take the softmax of this dense layer and the resultant vector will be a probability distribution with the same dimension.

This image has an empty alt attribute; its file name is image-20.png

The resultant probability distribution will be called as Y^ which will have three components ( equal to the dimension of the vocabulary), each component will be the probability of the corresponding word in the vocabulary

This image has an empty alt attribute; its file name is image-21.png

Having seen the forward pass let us look at how the back propogation works. Let us start with the error term which in this case will be cross entropy loss as this is a classification problem. The cross entropy loss will have the form

This image has an empty alt attribute; its file name is image-29.png

In this equation the term y is the true label in one hot encoded form. So if the first index ( y1) is the true label for this example the label vector in one hot encoded format will be

This image has an empty alt attribute; its file name is image-34.png

Now let us get into the motions of backpropogation. We need to back propogate till at after which the backpropogation equation will be the same as what we derived in the toy example. The complete back propogation equation till at according to the chain rule will be

Let us look at the derivations term by term

Back propogation derivation for first term

The first equation ∂E/∂Y^ is a differentiation with respect to a vector as Y^ ,having three components, Y1 , Y2 and Y3 . A differentiation with a vector is called a Jacobian which will again be a vector of the same dimension as Y.

This image has an empty alt attribute; its file name is image-27.png

Let us look at deriving each of these terms within the vector

This image has an empty alt attribute; its file name is image-30.png

Please note ∂/∂y(Logy) = 1/y

Similarly we get

This image has an empty alt attribute; its file name is image-31.png

So the Jacobian of ∂E/∂Y^ will be

This image has an empty alt attribute; its file name is image-32.png

Suppose the first label (y1) is the true label. Then the one hot encoded form which is [ 1 0 0 ] will make the above Jacobian

This image has an empty alt attribute; its file name is image-36.png

Back propogation derivation for second term

Let us do the derivation for the second term ∂Y^/∂Z . This term is a little more interesting as both the Y and Z are vectors. The differentiation will result a Jacobian matrix of the form

This image has an empty alt attribute; its file name is image-38.png

Let us look at the first row and get the derivatives first. To recap let us look at the equations involved in the derivatives

This image has an empty alt attribute; its file name is image-40.png

Let us take the derivative of the first term ∂Y1^/∂Z1 . This term will be the derivative of the first element in the matrix

This image has an empty alt attribute; its file name is image-41.png

Taking the derivation based on the division rule of differentiation we get

This image has an empty alt attribute; its file name is image-44.png

Please note ∂/∂y(ey) = ey

Taking the common terms in the numerator and denominator and re-arranging the equation we get

This image has an empty alt attribute; its file name is image-45.png

Dividing through inside the bracket we get

This image has an empty alt attribute; its file name is image-47.png

Which can be simplified as

This image has an empty alt attribute; its file name is image-48.png

Since

This image has an empty alt attribute; its file name is image-49.png

Let us take the derivative of the second term ∂Y1^/∂Z2 . This term will be the derivative of the first element in the matrix with respect to Z2

This image has an empty alt attribute; its file name is image-50.png

With these two derivations we can get all the values of the Jacobian. The final form of the Jacobian would be as follows

This image has an empty alt attribute; its file name is image-57.png

Well that was a long derivation. Now to get on to the third term.

Back propogation derivation for third term

Let us do the derivation for the last term ∂Z/ ∂at . We know from the dense layer we have

Z = Wy * at

So in vector form this will be

This image has an empty alt attribute; its file name is image-53.png

So when we take the derivation we get another Jacobian vector of the form

This image has an empty alt attribute; its file name is image-54.png

So thats all in this derivation. Now let us tie everything together to get the derivative with respect to the output term using the chain rule

Gradient with respect to the output term

We earlier saw that the equation of the gradient as

Let us substitute with the derivations which we already found out

This image has an empty alt attribute; its file name is image-58.png

The dot product of the first two terms will get you

This image has an empty alt attribute; its file name is image-59.png

The dot product of the above term with the last vector will give you the result you want

This image has an empty alt attribute; its file name is image-61.png

This is the derivation till ∂E/∂at . The rest of the derivation down from here to various components inside the LSTM layer will be the same as we have seen earlier in the toy example.

In terms of dimensions let us convince ourselves that we get the dimension equal to the dimension of ∂at

[1 , 3 ] * [3, 3] * [3, 1] ==> [1,1]

Wrapping up

That takes us to the end of the “Looking inside the hood” sessions for our model. In the two sessions we saw the forward propagation part of the LSTM cell and also derived the backward propagation part of the LSTM using toy examples. These examples are aimed at giving you an intuitive sense of what is going on inside the cells. Having seen the mathematical details, let us now get into real action. In the next post we will build our prototype using python on a Jupyter notebook. We will be implementing the encoder decoder architecture using LSTM. Having equipped with the nuances of the encoder decoder architecture and also the inner working of the LSTM you would be in a better position to appreciate the models which we will be using to build our Machine translation application.

Go to article 5 of this series : Building the prototype using Jupyter notebook

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, I would recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!

III : Build and Deploy Data Science Products : Looking under the hood of Machine translation model – LSTM Forward Propagation

Source : How stuff works

“Look deep into nature and you will understand everything better”

Albert Einsteen

This is the third part of our series on building a machine translation application. In the last two posts we understood the solution landscape for machine translation and also explored different architecture choices for sequence to sequence models. In this post we take a deep dive into the dynamics of the model we use for machine translation, LSTM model. This series consists of 8 posts.

  1. Understand the landscape of solutions available for machine translation
  2. Explore sequence to sequence model architecture for machine translation.
  3. Deep dive into the LSTM model with worked out numerical example.( This post)
  4. Understand the back propagation algorithm for a LSTM model worked out with a numerical example.
  5. Build a prototype of the machine translation model using a Google colab / Jupyter notebook.
  6. Build the production grade code for the training module using Python scripts.
  7. Building the Machine Translation application -From Prototype to Production : Inference process
  8. Build the machine translation application using Flask and understand the process to deploy the application on Heroku

Dissecting the LSTM network

I was recently reading the book ” The Agony and the Ecstacy’ written by Irving Stone. This book was about the Reniassence genius, master sculptor and artist Michelangelo. When sculptuing human forms, in his quest for perfection , Miehelangelo used to spent months dissecting dead bodies to understand the anotomy of human beings. His thought process was that unless he understood in detail how each fibre of human muscle work, it would be difficult to bring his work to life. I think his experience in dissecting and understanding the anatomy of the human body has had a profound impact on his masterpieces like Moses, Pieta,David and his paintings in the Sistine Chapel.

Michaelangelo’s Moses,Pieta, David & Sistine chapel frescos

I too believe in that philosophy of getting a handle on the inner working of algorithms to really appreciate how they can be used for getting the right business outcomes. In this post we will understand the LSTM network in depth and explore its therotical underpinnings. We will see a worked out example of the forward pass for a LSTM network.

Forward pass of the LSTM

Let us learn the dynamics of the forward pass of LSTM with a simple network. Our network has two time steps as represented in the below figure. The first time step is represented as 't-1' and the subsequent one as time step 't'

Let us try to understand each of the terms in the above network. A LSTM unit receives as its input the following

  1. c<t-2> : The cell state of the previous time step
  2. a<t-2> : The output from the previous time step
  3. x<t-1> : The input of the present time step

The cell state is the unit which is responsible for trasmitting the context accross different time steps. At each time step certain add and forget operations happens to the context transmitted from the previous time steps. These Operations are controlled through multiple gates. Let us understand each of the gates.

Forget Gate

The forget gate determines what part of the input have to be introduced into cell state and what needs to be forgotten. The forget gate operation can be represented as follows

Ґf = sigmoid(Wf*[ xt ] + Uf * [ at-1 ] + bf)

There are two weight parameters ( Wf and Uf ) which transforms the input ( xt ) and the output from the previous time step ( at-1) . This equation can be simplified by concatenating both the weight parameters and the corresponding xt & at vectors to a form given below.

Ґf = sigmoid(Wf *[xt , at-1] + bf)

Ґf is the forget gate

Wf is the new weight matrix got by concatenating [ Wf , Uf]

[xt , at-1]is the concatenation of the current time step input and the previous time step output from the

bf is the bias term.

The purpose of the sigmoid function is to quash the values within the bracket to act as a gate with values between 0 & 1 . These gates are used to control the flow of information. A value of 0 means no information can flow and 1 means all information needs to pass through. We will see more of those steps in a short while.

Update Gate

Update gate equation is similar to that of the forget gate . The only difference is the use of a different weight for this operation.

Ґu = sigmoid(Wu *[xt , at-1] + bu)

Wu is the weight matrix

Bu is the bias term for the update gate operation

All other operations and terms are similar to that in the forget gate

Input activation

In this operation the input layer is activated using a tanh non linear activation.

C~ = tanh(Wc *[x , a] + bc)

C~ is the input activation

Wc is the weight matrix

bc is the bias term which is added.

operation converts the terms within the bracket to values between -1 & 1 . Let us take a pause and analyse why a sigmoid is used for the gate operations and tanh used for the input activation layers.

The property of sigmoid is to give an output between 0 and 1. So in effect after the sigmoid gate, we either add to the available information or do not add any thing at all. However for the input activation we also might need to forget some items. Forgetting is done by having negative values as output. tanh layer ranges from -1 to 1 which you can see have negative values. This will ensure that we will be able to forget some elments and remember others when using the tanh operation.

Internal Cell State

Now that we have seen some of the building block operations, let us see how all of them come together. The first operation where all these individual terms come together is to define the internal cell state.

We already know that the forget and update gates which have values ranging between 0 to 1, act as controllers of information. The forget gate is applied on the previous time step cell state and then decides which of the information within the previous cell state has to be retained and what has to be eliminated.

Ґf * C<t-1>

The update gate is applied on the input activation information and determines which of these information needs to be retained and what needs to be eliminated .

Ґu * C~

These two informations block i.e the balance of the previous cell state and the selected information of the input activation are combined together to form the current cell state. This is represented in the equation as below.

C<t> = Ґu * C~ + Ґf * C<t-1>

Output Gate

Now that the cell state is defined it is time to work on the output from the current cell. As always, before we define the output candidates we first define the decision gate. The operations in the output gate is similar to the forget gate and the update gate .

Ґo = sigmoid(Wo *[x , a] + bo)

Wo is the weight matrix

Bo is the bias term for the update gate operation

Output

The final operation within the LSTM cell is to define the output layer. The output candidates are determined by carrying out a tanh() operation on the internal cell state. The output decision gate is then applied on this candidate to derive the output from the network. The equation for the output is as follows

a<t> = tanh(C<t>) * Ґo

In this operation using the tanh operation on the cell state we arrive at some candidates to be forgotten ( -ve values) and some to be remembered or added to the context. The decision on which of these have to be there in the output is decided by the final gate, output gate.

This sums up the mathematical operations within LSTM. Let us see these operations in action using a numerical example.

Dynamics of the Forward Pass

Now that we have seen the individual components of a LSTM let us understand the real dynamics using a toy numerical examples.

The basic building block of LSTM like any neural network is its hidden layer, which comprises of a set of neurons. The number of neurons within its hidden unit is a hyperparameter when initializing a LSTM. The dimensions of all the other components of a LSTM depends on the dimension of the hidden unit. Let us now define the dimensions of all the components of the LSTM.

ComponentDescriptionDimension of the component
LSTM hidden unitSize of the LSTM unit ( No of nuerons of the hidden unit)(n_a)
mNumber of examples(m)
n_xSize of inputs(n_x)
C<t-1>Dimension of previous cell state(n_a , m)
a<t-1>Dimensions of previous output(n_a , m)
x<t>Current state input(n_x , m)
[ x<t> , a<t-1> ]Concatenation of output of previous time step and current time step input(n_x + n_a, m)
Wf, Wu, Wc, WoWeights for all the gates(n_a , n_x + n_a)
bf bu bc b0Bias term for all operations(n_a ,1)
WyWeight for the output(n_y , n_a)
byBias term for the output(n_y ,1)

Let us now look at how the dimensions of the different outputs evolve after different operations within the LSTM .

Please note that when we do matrix multiplications with two matrices of size ( a,b) * (b,c) we get an output of size (a,c)
ComponentOperationDimensions
Ґf : Forget gatesigmoid(Wf * [x , a] + bf)(n_a, n_x + n_a) * (n_x + n_a ,m) + (n_a,1) = > (n_a , m).
Sigmoid is applied element wise and therefore dimension doesn’t change.
* : denotes matrix multiplication
Ґu: Update gatesigmoid(Wu *[x , a] + bu)(n_a, n_x+n_a ) * (n_x+n_a,m) + (n_a,1) = > (n_a , m)
C~: Input activationtanh(Wc *[x , a] + bc)(n_a, n_x + n_a) * (n_x + n_a , m) + (n_a, 1) = > (n_a, m).
Ґo : Output gate(Wo *[x , a] + bo)(n_a, n_x+n_a ) * (n_x + n_a ,m) + (n_a,1) = > (n_a,m)
C<t> : Current stateҐu x C~ + Ґf x C<t-1>(n_a, m) x (n_a, m) + (n_a, m) x (n_a, m) = > (n_a, m)
x: denotes element wise multiplication
a<t> : Output at current time steptanh(C<t>) x Ґo(n_a, m) x (n_a, m) => (n_a, m).

Let us do a toy example with a two time step network with random inputs and observe the dynamics of LSTM.

The network is as defined below with the following inputs for each time steps. We also define the actual outputs for each time step. As you might be aware the actual output will not be relevant during the forward pass, however it will be relevant during the back propogation phase.

Toy example with LSTM

Our toy example will have two time steps with its inputs (Xt) having two features as shown in the figure above. For time step 1 the input is Xt-1 = [0.4,0.3] and for time step 2 the input is Xt = [0.2,0.6]. As there are two features, the size of the input unit is n_x = 2. Let us tabulate these values

VariableDescriptionValuesDimension
X t-1Input for the first time step[0.4, 0.3](n_x , m)
= > (2 ,1)
XtInput for the second time step[0.2, 0.6](n_x , m)
= > (2 ,1)

For simplicity the hidden layer of the LSTM has only one unit which means that n_a = 1. For the first time step we can assume initial values for the cell state Ct-2 and output from previous layers at-2 as ‘0’.

VariableDescriptionValuesDimension
Ct-2Initial cell state[0](n_a , m) = > (1 ,1)
at-2Initial output from previous cell[0](n_a , m) = > (1 ,1)

Next we have to define the values for the weights and biases for all the gates. Let us randomly initialize values for the weights. As far as the weights are concerned, what needs to be carefully defined are the dimensions of the weights. In the earlier table where we defined the dimensions of all the components we defined the dimension of the weights as (n_a , n_x + n_a). But why do the weights be with these dimensions ? Let us dig deeper.

From our earlier discussions we know that the weights are used to get the sigmoid gates which are multiplied element wise on the cell states. For example

Ct = Ґu * C~ + Ґf * Ct-1

or

at = tanh(Ct) * Ґo.

From these equations we see that the gates are multiplied element wise to the cell states. To do an element wise multiplication, the gates have to be of the same dimensions as the cell state, i.e. (n_a, m). However, to derive the gates, we need to do a dot product of the initialised weights with the concatenation of previous cell state and the input vector [n_x+n_a]. Therefore to get an output dimension of (n_a, m) we need to have the weights with dimensions of (n_a , n_x + n_a) so that the equation of the gate ,Ґf = sigmoid(Wf *[x , a] + bf), generates an output of dimension of (n_a ,m ). In terms of matrix multiplication dynamics this equation can be represented as below

Having seen how the dimensions are derived, let us tabulate the values of weights and its biases .Please note that the values for all the weight matrices and its biases are randomly initialized.

WeightDescriptionValuesDimension
Wf,Forget gate Weight[-2.3 , 0.6 , -0.13 ]
[n_a , n_x + n_a] => (1,3)
bfForget gate bias[0.51][n_a] => 1
WuUpdate gate weight[1.51 ,-0.61 , 1.31][n_a , n_x + n_a] => (1,3)
buUpdate gate bias[1.30][n_a] => 1
Wc,Input activation weight[0.82,-0.57,-0.13][n_a , n_x + n_a] => (1,3)
bcInternal state bias[-0.57][n_a] => 1
WoOutput gate weight[-0.75 ,-0.95 , -0.34][n_a , n_x + n_a] => (1,3)
b0Output gate bias[-0.46][n_a] => 1

Having defined the initial values and the dimensions let us now traverse through each of the time steps and unravel the numerical example for forward propagation.

Time Step 1 :

Inputs : X t-1 = [0.4, 0.3]

Initial values of the previous state

at-2= [0] ,

Ct-2 = [0]

Forget gate => Ґf = sigmoid(Wf *[x , a] + bf) =>

= sigmoid( [-2.3 , 0.6 , -0.13 ] * [0.4, 0.3, 0] + [0.51] )

= sigmoid(((-2.3 * 0.4) + (0.6 * 0.3) + (-0.13 * 0 )) + 0.51)

= sigmoid(-0.23) = 0.443

Please note  sigmoid (-0.23) = 1/(1 + e(-(-0.23))

Update gate => Ґu = sigmoid(Wu *[x , a] + bu) =>

= sigmoid( [1.51 ,-0.61 , 1.31] * [0.4, 0.3, 0] + [1.30] )

= sigmoid((1.51 * 0.4) + (-0.61 * 0.3) + (1.31 * 0 ) + 1.30)

= sigmoid(1.721) = 0.848

Input activation => C~ = tanh(Wc *[x , a] + bc)

= tanh( [0.82,-0.57,-0.13] * [0.4, 0.3, 0] + [-0.57] )

= tanh (((0.82 * 0.4) + (-0.57 * 0.3) + (-0.13 * 0 )) + -0.57)

= tanh(-0.413) = -0.39

Please note tanh = ex – e-x / ( ex + e-x) where x = -0.413
= e-0.413 – e-(-0.413) / ( e-0.413 + e-(-0.413)) = -0.39

Output Gate => Ґo = sigmoid(Wo *[x , a] + bo)

= sigmoid( [-0.75 ,-0.95 , -0.34] * [0.4, 0.3, 0] + [-0.46] )

= sigmoid(((-0.75 * 0.4) + (-0.95 * 0.3) + (-0.34 * 0 )) + -0.46)

= sigmoid(-1.045)= 0.26

We now have all the components required to calculate the internal state and the outputs

Internal state => Ct-1 = Ґu * C~ + Ґf * Ct-2

= 0.848 * -0.39 + 0.443 * 0

= -0.33

Output => at-1 = tanh(Ct-1) * Ґo

= tanh(-0.33) * 0.26 = -0.083

Let us now represent all the numerical values for the first time step on the network.

With the calculated values of time step 1 let us proceed to calculating the values of time step 2

Time Step 2:

Inputs : Xt = [0.2, 0.6]

Values of the previous state output and cell states

at-1 = [-0.083]

Ct-1 = [-0.33]

Forget gate => Ґf = sigmoid(Wf *[xt , at-1] + bf) =>

= sigmoid( [-2.3 , 0.6 , -0.13 ] * [0.2, 0.6, -0.083] + [0.51] )

= sigmoid(((-2.3 * 0.2) + (0.6 * 0.6) + (-0.13 * -0.083 )) + 0.51)

= sigmoid(0.421) = 0.60

Update gate => Ґu = sigmoid(Wu *[xt , at-1] + bu) =>

= sigmoid( [1.51 ,-0.61 , 1.31] * [0.2, 0.6, -0.083] + [1.30] )

= sigmoid(((1.51 * 0.2) + (-0.61 * 0.6) + (1.31 * -0.083 )) + 1.30)

= sigmoid(1.13) = 0.755

Input activation => C~ = tanh(Wc *[xt , at-1] + bc)

= tanh( [0.82,-0.57,-0.13] * [0.2, 0.6, -0.083] + [-0.57] )

= tanh(((0.82 * 0.2) + (-0.57 * 0.6) + (-0.13 * -0.083 )) + -0.57)

= tanh(-0.737) = -0.63

Output Gate => Ґo = sigmoid(Wo *[x , a] + bo)

= sigmoid( [[-0.75 ,-0.95 , -0.34] * [0.2, 0.6, -0.083] + [-0.46] )

= sigmoid(((-0.75 * 0.2) + (-0.95 * 0.6) + (-0.34 * -0.083 )) + -0.46)

= sigmoid(-1.15178)= 0.24

Internal state => Ct = Ґu * C~ + Ґf * Ct-1

= 0.755 * -0.63 + 0.60 * -0.33

= -0.674

Output => at = tanh(Ct) * Ґo

= tanh(-0.674) * 0.24 = -0.1410252

Let us now represent the second time step within the LSTM unit

Second Time step

Let us also look at both the time steps together with all its numerical values

This sums a single forward pass for the LSTM. Once the forward pass is calculated the next step is to determine the error term and the backpropagating the error to determine the adjusted weights and bias terms. We will see those steps in the back propagation steps, which will be covered in the next post.

Go to article 4 of this series : Back propagation of the LSTM unit

Do you want to Climb the Machine Learning Knowledge Pyramid ?

Knowledge acquisition is such a liberating experience. The more you invest in your knowledge enhacement, the more empowered you become. The best way to acquire knowledge is by practical application or learn by doing. If you are inspired by the prospect of being empowerd by practical knowledge in Machine learning, I would recommend two books I have co-authored. The first one is specialised in deep learning with practical hands on exercises and interactive video and audio aids for learning

Deep Learning Workshop

This book is accessible using the following links

The Deep Learning Workshop on Amazon

The Deep Learning Workshop on Packt

The second book equips you with practical machine learning skill sets. The pedagogy is through practical interactive exercises and activities.

The Data Science Workshop Book

This book can be accessed using the following links

The Data Science Workshop on Amazon

The Data Science Workshop on Packt

Enjoy your learning experience and be empowered !!!!